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ABSTRACT

The notion that a good decision strategy is a flexible one has
long been intuitively appreciated by decision makers. Decision analy-
sis, however, has had little to say on the subject of flexibility.

The purpose of this thesis is to place the flexibility concept within
the decision analysis framework.

The analysis begins with an application of decision theory tech-
niques to the problem of choosing between flexible and inflexible deci-
sion strategies. A precise mathematical definition of decision flex-
ibility is proposed whercin the relative flexibility of a decision is
measured by the size of the decision choice set. Further application
of the theory of decision analysis provides a measure of the value of
flexibility.

A strong complementarity between information and flexibility is
observed. The more information is expected during the execution of a
plan, the more valuable is flexibility. Conversely, the more flexi-
bility one has, the greater the value of information gathering. The

cornnepts of the value of information and the value of flexibility are

secen to be inseparable. We define a more fundamental concept of the
value of information given flexibility and point out the applications
of the concept to decision making.

The value of information given flexibility is analyzed for deci-

sion problems with quadratic value functions. The restriction to this

class allows us to isolate the impact of two characteristics that in

a large part determine the economic impact of information and flexi-
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bility. These are (1) the extent of correlation among the state and
information variables and (2) the amount of interaction among the
decision variables.

A portion of the thesis is devoted to a study of the effects
of the information and flexibility quantization necessary for a deci-
sion tree representation of a sequential decision problem. The anal-

ysis indicates that even a very rough system nf quantization tands
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to introduce only small losses into the optimal solution of a
sequential decision problem. Thus, support is given to the method
of solution of sequential problems by decision trees.

Finally, methods are presented for simplifying the calculation
of the value of information given flexibility through the use of

sensitivity analysis.,
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INTRODUCTION AND SUMMARY OF RESULTS

In the course of the scientific development of the theory of
decision-making, it often has been the case that substantial improve-
ments in understanding have resulted from the mathematical refinement
of common terms. Words such as "uncertainty," "risk," and "information"
have everyday meanings that fail to distinguish adequately a problem's
characteristics. Consequently for the purposes of economic analysis,
their definitions have been narrowed, or they have been replaced by new
terms whose meanings are more precise.

The objective of this thesis is to present a mathematically pre-
cise definition of the term "flexibility" appropriate to the discipline
of decision analysis. We believe that an important measure of the ap-
propriateness of a definition should be the worth of the insights
genarated from its use. Consequently, a major portion of our work is
an exploration for useful results that may be derived from the apwlica-

tion of our definition.

Chapter 1

Chapter 1 presents our definition of decision flexibility. We view
the flexibility of a given decision variable to be determined by the
size of the choice set associated with that variable. Roughly speaking,
the larger the choice set--that is, the more alternatives that are
available for a decision--the greater is the decision flexibility.

Since flexibility is a property of the choice set for a variable
rather than a property of the variable itself, the degree of flexibil-
ity possessed by each decision will change during the decision process.
The actions taken early in a decision process often affect the number
of alternatives available later on. The action to acquire a choice set
is a decision that produces flexibility on another variable. Thus,
the decision to keep a large amount of cash in your checking account is
not, by our definition, necessarily a flexible decision. Rather, it is
this decision that increases our subsequent flexibility for the deci-
sion of what we purchase by check. On the other hand, the irreversible

commitment of a decision variable to a specific alternative eliminates

ne
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the flexibility associated with that variable. Prior to zeroing out
one's checking account, the decision to buy either a set of golf clubs
or a new dishwasher is still flexible. However, the minute we hand

over the check in the sporting goods store that decision becomes in-
flexible.

Chapter 2

Chapter 2 is concerned with placing an economic value on maintain-
ing a given amount of decision flexibility. The value of flexibility,
however, is strongly dependent upon the information that might be re-
ceived during the decision process. The more a decision maker expects
to learn in the course of a decision, the more it pays to follow flex-
ible decision strategies. Conversely, the more flexible one's decision
strategy, the greater the value of information-gathering. Thus, the
concepts of value of information and value of flexibility become spe-
cial cases of the more general concept of the value of information
given flexibility.

The value of information given flexibility measures the value to
the decision maker, in economic units, of obtaining a given amount of
information together with a given amount of decision flexibility. An
upper limit to this quantity, the expected valu. »f perfect information
given perfect flexibility (EVPIGPF), may be calculated. The method
deviates only slightly from the standard decision theory calculation of
the expected value of perfect information (EVPI).

The EVPIGPF is similar to, but more complete than, the concept of
EVPI. Whereas EVPI measures the value of perfect information under the
assumption that all decision variables may be adjusted to utilize the
information, the EVPIGPF explicitly states which decision variables may
be adjusted in response to what information. In a real system it may
be costly or impossible to maintain flexibility on all decisions while
awaiting the arrival of some piece of information. By comparing the
costs of maintaining flexibility with the EVPIGPF, the decision maker

has a method for deciding which decisions ought to be kept flexible and

on which it is more profitable to eliminate flexibility.
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Chapter 3

Chapter 3 calculates the EVPIGPF for a particular class of decision
problems that we call quadratic. Quadratic decisions may be thought of
as approximations to a much broader class of problems characterized by
decision and uncertain outcome variables that may take on a continuum
of values. The exploration identifies the influence of a number of
problem parameters on the value of obtaining information with decision
flexibility. One of these parameters is the degree of interaction
among the problem decision variables. Specifically, if v represents
the value of a particular outcome of a decision, the degree of interac-
tion between a decision variable d; and a decision variable d, is
measured by the second partial der’vative %Zv/Edinj . This deriva-
tive gives the degree to which a change in decision variable d. in-
fluences the effect of a change in decision variable di on outcome
value.

An interesting result of Chapter 3 states that to a first order
approximation the value of obtaining information on one uncertain quan-
tity plus the value of obtaining information on another uncertain quan-
tity will equal the value of obtaining information on both quantities
simultaneously, only provided that the information is uncorrelated;
that is, provided that lcarning one quantity does not help us in learn-
ing the other. Similarly, the value of obtaining flexibility on one
decision plus the value of obtaining flexibility on another decision
will, to a first approximation, equal the value of obtaining flexibil-

ity jointly, only provided that the two decisions do not interact.

Chapter 4

One of the most common methods for analyzing decision problems is
the decision tree. In a decision tree information and flexibility are
represented as quantized or discretized approximations by branches ema-
nating from nodes in a tree-like structure. Chapter & is concerned
with the effect of such quantization on the value of information given
flexibility. A method is presented for determining the precise econo-
mic loss to be expected from using a quantized rather than an exact in-
formation reporting system. In addition, the possibility of designing

optimal quantizing systems is demonstrated.
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Once again, an analysis is conducted on the special class of qua-

dratic problems. For the two-variable quadratic problem, which contains

A A e e

a single decision and a single uncertain outcome, the expected economic
loss from information quantization or flexibility discretization is in-

vestigated for several different probability distributions describing

T N T R Lk

the uncertain outcome. Expected loss is found to be relatively insen-
sitive to the particular quantizing or discretizing system chosen.

Invariably, the expected economic loss falls quickly with the number of

TR e, ¥ f ppoees

quantizing or discretizing levels employed: roughly 60% of the value
of information or 60% of the value of flexibility may be obtained using
only two levels, and 80% of the value may be expected using three lev-
els. The implication is that information and flexibility are well rep-
resented in a decision tree by as few as three branches from respective

state or decision nodes.

; Chapter 5

3 Chapter 5 incorporates the flexibility concept into a useful tech-
nique for decision model design and analysis called "sensitivity analy-
sis." One form of sensitivity analysis is proximal analysis. Proximal

analysis assumes that the decision problem is approximately quadratic.

Thus, the thesis results concerning the quadratic decision problem are

directly applicable here. The main results of Chapter 5 provide tech-

niques for more easily estimating the EVPIGPF under the assumptions of

the proximal model.
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CHAPTER 1
THE CONCEPT OF FLEXIBILITY

Nearly everyone is familiar with the story of a plan that went
wrong because it failed to adjust for some unforeseen circumstance.
We might say that such a plan lacked flexibility, that a good decision
strategy is a flexible one. However, what exactly do we mean by deci-

sion flexibility?

1.1 LITERATURE

If one turns to micro-economic literature on the theory of the
firm, one will uncover a number of definitions for decision flexibility.
For most authors flexibility is, roughly speaking, a property of a de-
cision which makes it easily altered. Hart [6] and Theil [14] define
flexible decision rules as dynamic, inflexible decision rules as sta-
tic. From their point of view if a production plant is flexible, it
is possible to diverge from planned values at a date subsequent to their
acceptance. Hence, flexibility refers to the ability to modify plans
over time. Marschak and Nelson [10] are more specific. For them flex-
ibility is a property of an initial decision which makes subsequent ac-
tions less costly or preserves more choices. Stigler [13] and Baumol
[1] refer to flexibility in the context of static decision-making;
for them it means the rate of change of marginal cost. The smaller a
plant's second derivative of total cost, the more flexibility it has.
Tisdell [15] illustrates the importance of distinguishing among the
various definitions of flexibility by demonstrating that they may have
conflicting consequences for decision-making. i i

In each case the meanings authors have ascribed to the term flex-
ibility have been appropriate only within the relatively narrow con-
texts of their particular problems. The objective of Chapter 1 is to
present a mathematically precise definition which is applicable to a

much broader class of problems.

1.2 DECISION ANALYSIS

For our definition and subsequent exploration of flexibility we
shall rely upon the theory of decision analysis [7,9]. Decision

.
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analysis is a practical discipline combining the techniques of decision

theory with the mathematical methods of systems analysis. Decision

theory is a logical means for formulating decision strategies under un-

certainty.

We define a decision action to be a commitment of scarce resources

that is irrevocable in the sense that it cannot be subsequently altered

without incurring a nontrivial penalty. A decision strategy is defined

as a deliberate sclection of a specific decision action from the set of

alternative actions. If this choice of action is made without knowing

the precise consequences of selecting at least one of the alternative

actions, we face a decision under uncertainty.

T R RSN Ctall vl LTTINEE. a W o L T e

1 Both the techniques of decision theory and the concept of fl.xibil-

ity will be made clearer by the analysis of an example. :

Example: The Sofa Sale

A yourg housewife named Linda thought she had found the perfect

sofa for the apartment, and at one-half the usual price. '"Now if

i

3 only Jim likes it," she thought, and she couldn't wait to show it to her

husband. "I'm sorry lady," apologized the salesman, "that model has

4 been selling like hotcakes. We've only got one left. I can't hold it 4

. 'til Saturday for you without a $25 ceposit, sto ° rules.'" "What should E

; I do?" Linda thought. "I'm almost sure Jim will like it, but I cer- f
tainly can't buy a sofa without his seeing it first." Just as she was

pondering her situation she overheard an excited conversation between

two elderly women, "Oh, look at that lovely sofa! Wouldn't that be

just perfect for cur den?" "Why yes, Martha, I believe you're right!"

The only way that Linda can retain flexibility on her decision

N e AL

whether or not to buy the sofa is to make the $25 deposit. Let's ima-
gine that she decides to analyze the problem using some techniques of ;
decision analysis. She observes that there are three possible outcomes :
to her problem. If she makes the deposit, she and her husband could

decide (a) to purchase the sofa, or (b) not to purchase it., If she

does not make the deposit, she reasons, it will certainly be sold be-

fore Saturday. Let us assume that Linda is able to rank preferen-

tially these three possible outcomes and express this ranking in a

-6-
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numerical fashion. In other words, we assume that she defines a util-
ity function over the set of possible outcomes. Figure 1.1 shows the
specific utilities U for this example.

While Linda has control over the decision of whaother or not to
make the deposit, she does not (for the purposes of this example, at
least) have control over whether or not her husband will want to pur-
chase the sofa. The decision whether or not to make the deposit and
the ultimate decision of whether or not to purchase the sofa are con-

trollable and, therefore, designated decision variables. Uncontrol-

lable determinants of outcome (in this case the opinion of Linda's hus-

band) are generally called state variables. While the decision maker

does not know which state will occi , she does know which state is
likely to occur. We assume that she expresses this knowledge in terms
of a probability distribution defined over the possible states. 1In
other words, Linda encodes her estimation as to the likelihood of state
occurrence in a probability function. In the present example we assume
a probability of .8 that the state, "Jim likes sofa," will occur and a

probability of .2 that the state, '"Jim doesn't like scfa," will occur.

STATE VARIABLE OUTCOMES
DECISION
£LTERNATIVES JIM LIKES SOFA JIM DOESN'T LIKE SOFA
Rk E DEPOSIT MADE, DEPOSIT MADE
SOFA BOUGHT SOFA NOT BOUGHT
DEPOSIT Ue3 G = BE
DON'T MAKE DEPOSIT NOT MADE,
DEPOSIT SOFA NST goucm

FIGURE 1 POSSIBELE QUTCOMES AND THEIR UTILITIES FOR THE SOFA SALE EXAMPLE
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This completes the necessary specification in the problem. The
decision maker has specified the alternative actions and uncontrol-
lable states in a mutually exclusive and exhaustive fashion. Subjec-
tive probabilities have been assigned to state occurrences, and each
conceivable outcome--that is, each possible combination of action and
t state--is described with an appropriate utility measurement. The de-
E cision structure is summarized in "tree" form in Fig. 1.2.

Now, according to the fundamental theorem of decision theory,

the best action alternative is the one with the highest expected util-

ity. The expected utility of a given action is defined to be the sum,

over all possible states, of the utilities of the state conditioned

R MR T P Wtoo WePRR | ey o e

outcomes multiplied by the probabilities of the corresponding states.

The expected utility of the "make deposit" alternative is, therefore,

),
b LINDA'S
ALTERNATIVE JIM'S ULTIMATE OUTCOME
ACTIONS REACTION DECISION UTILITIES
BUY SOFA
. 2
i JIM
LIKES
i MAKE DEPOSIT JIM
DOESN'T
LIKE SOFA
DON'T BUY SOFA
DOW'T MAKE DEPOS!T
| STATUS QUO
o 0
i

FIGURE 1.2 LINDA’'S DECISION TREE
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E("make deposit") = Prob('Jim likes sofa") % U("buy sofa")
- 4+ Prob("Jim doesn't like sofa')

x U("don't buy sofa')
= 8x 2+ .2x%x (-.5) = 1.5 units . (1.2.1)
] Since this exceeds the expected utility of the "don't make deposit”
alternative (O units), the best alternative given these action alterna-
tives, states, probabilities, and utilities of outcomes 1is to make the

deposit. 1In this case the cost of retaining flexibility on the decision

to buy the sofa is well worth the expected gain.

A BASIC DECISION MODEL

The example of this section illustrated some of the essential fea-

tures of decision analysis. Given an uncertain choice situation, the
decision analyst performs a decomposition of the problem, usually fol-
lowing a procedure symbolized by the flow graph shown in Fig. 1.3. In

a deterministic phase he specifies the alternative actions, states, and

outcomes relevant to the problem and assigns dollar values to the out-

comes. In a probab:.iistic phase he encodes the decision maker's uncer-

tainties on the state variables in a subjective probability distribution
and his feelings iowards risk in a utility function. Finally, an infor-

mational phase may be executed in which calculations of the value of

gathering additional information are made. At this point either an
optimal action alternative is chosen, or the decision is made to gather

further information and the cycle is repeated.

DETERMINISTIC PROBABILISTIC INFORMATIONAL
4= I po—
. PHASE J PHASE . PHASE -
|
INFORMATION ‘ 1
GATHERING 1

FIGURE 1.3 THE DECISION ANALYSIS CYCLE
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A Static Model

If no additional information is anticipated to become available in
the course of the decision process, the chcice of decision action must
be based solely on the decision maker's current state of experience. In
this simplest case there are five essential components of the decision

maker's resource commitment problem. These are:

L, A feasible set D of mutually exclusive and exhaustive decision
acticn vectors d = (dl,...,dm) - One and only one d € D must
be selected.

2. An appropriate set S of mutually exclusive and exhaustive state
vectors s = (sl,...,sn) . One and only one s ¢ S8 will occur.

Je A probability distribution F defined on S which consistently
describes the decision maker's feelings about the likelihood of
various states occurring. Usually F is assumed to be indepen-
dent of the decision d

4. A value function v(:,-) defined on the Cartesian product of the
sets S and D that describes the decision maker's assessment
of the dollar value of each combination of decision alternative
and state. Since each outcome is described by a unique combina-
tion of decision alternative and state, the value function may be
thought of as defining a dollar value for each outcome.

5. A utility U = u(v) defined for each v(s,d), s ¢S ,d €D ,

which expresses the decision maker's feelings toward risk.
P g

These five model components, denoted {D,S,F,v,u} , are specified on
the basis of the decision maker's existing state of experience, which
we explicitly denote by 8 . One special state of experience is the
total knowledge available at the beginning of the problem, the prior
experience. When the level of experience is assumed to be the prior
experience, we shall use the special symbol € .

According to the principles of decision analysis, we can now lo-
cate the decision maker's most preferred action by selecting the
d ¢ D which results in the greatest expected utility; that is, the

analysis requires us to solve for

d¥% = max-l

}' ulv(s,d)] dF . (1.2.2)
deD sesS
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Information Procussing

Without doubt, the major contribution of decision theory is the
recognition of uncertainty and its partial (or complete in the case
of clairvoyance) resolution throuph information. By information we
mean any data which may alter the decision maker's predictions.

If the five facets of the decision model are correctly specified,
the decision maker's outcome uncertainty is confined solely to state
occurrerce. We make this assumption. Stated differently, although
S,D,F,v,and u are all based on the decision maker's prior
level of experience € , we hypothesize that if & changes, the effect
on the model is completely accounted for by a change in F ; that is,
by probability revision. The dependence of the decision maker's
probability distribution on his state of experience will be made ex-
plicit by using the inferential notation [s|8} to denote the prob-
ability density function of 5 . When we wish to denote explicitly
that the expected value of a random vector s is based on the state

of knowledge, we will use in place of

E(s) = 5 dF (1.2.3)

the notation

]

s . (1.2.4)

“s|4-= | sfs
s® S8

If the impact of information is strictly limited to probability
revision, the basis for information analysis is provided by Bayes' rule.
To illustrate, supposc that some information-gathering method or ex-
periment 7 produces information or signal y from some set of pos-
sible signals Y . Knowledge of y changes the decision maker's
distribution on s to f{sly,€] , which is related (o the prior dis-
tribution {s|€} by Bayes' equation,

fyls,el {sle
y's,c S )
fsly,e} = STET— - (1.2.5)

The quantity {y|s,&} 1is the probability of observing a particular

A1l
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y «Y for any value of the state vector and is called the likelihood
fimetion. The quantity fy‘E} is called the preposterior distribu-
tion. Lt is the probability of observing a particular y =Y before
the signal is received and is related to the likelihood function and

pricr by

fyley = | fyls,el {sle} . (1.2.6)
se S

A Dynamic Model

When a decision maker anticipates receiving an information signal
v , it is often possible (and usually desirable) to make some components
of his strategy contingent upon that signal. 1In such cases we shall
assume that his possible decision strategies are confined to some fea-
sible set D of decision functions defined over Y . Each decision
function in D associates a feasible action from D to each possible
signal in Y . The optimal strategy is found by determining from the
feasible set the function d*(-) that maximizes the expected utility.

o n

d*(-) = max Couls,am D {sly,e1 fyley .
d(-)aD yeY s&S
(1.2.7)

An Abstract Representation of the Basic Decision Model

Figure 1.4 is a useful abstract representation of the basic deci-
sion model. Problem variables are divided into those that are under
the control of the decision maker--decision variables--and those not
under his control--state variables. We can visualize the variables as
control knobs, the settings of which determine the reading on a utility
meter. The decision variables knobs are set by the decision maker.

The state variable knobs are set by a disinterested Nature. The objec-
tive of the decision maker is to choose the best possible settings for
his decision econtrol knobs, those settings which will produce the high-
est expected reading on the utility meter. If no additional information
will be received, possible decision variable settings are the elements

of the action set D . However, if a suitable information system exists
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FIGURE 14 AN ABSTRACT REPRESENTATION CF THE BASIC DECISION MODEL

and the decision may be conditioned upon the arrival of information sig-
nals from this system, then the possible decision variable settings are
functions of the signals. 1In this case a set of feasible decision strate-
gies D is determined, and the decision maker must choose a decision

control knob setting (a feasible function of the signal y ) from this
set,

1.3 A MATHEMATICAL DEFINITION OF FLEXIBILITY

We shall now formulate a mathematical definition of flexibility us-
ing the decision analysis framework developed in the last section. The
Sofa Sale example illustrated that flexibility may be interpreted as a
property of the set of decision alternatives (the choice set) associated
with a given decision variable. If the deposit is made, Linda has two
alternatives fur the purchasing decision--buy or don't buy--subsequent
to learning an important piece of information--whether or not her hus-
band likes the sofa. If the deposit is not made, there is only one al-
ternative. Linda will not purchase the sofa. With flexibility, the
decision choice set is larger.

We formalize this definition using the decision model illustrated
in Fig. 1.5. This figure is identical to that of Fig. 1.4 except that

we have illustrated the existence of an information structure

n

which will yield an information signal y . The structure is assumed

o=
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FIGURE 1.5 BASIC DECISION MODEL WITH INFORMATION STRUCTURE

to distribute the signal in such a way that some function of y , de-
noted ij(y) , 1s available for the setting of the decision variable

dj . A common example is the case in which y represents data received
over time and gj(y) is the data received prior to the setting of the
jth decision variable. The set of feasible decision functions D will,
in general, consist of a set of vector functions {(dl,...,dm)} for

(
which the component dj is a function only of the fraction of total ex-

perience (ij(y),G) . Imagine now that all decision variables with the
eXception of dj have been set to specific decision functions d?,...,
o o

dj-l’dj+1""’dg . We define ﬁ? to be the set of possible settings

for the decision variable dj s

a0 (¢} 0 o o =
D(8) {djl(dl,...,dj_l,dj,dj+1,...,dm) eD,S}. (1.3.1)

We shall define flexibility on the jth decision variable as a property

of its decision set Bg

-14-
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DEFINITION 1.3.1: Imagine two decision models M = ID,S,{_S‘&‘,},V,U}
and M' = {D',S,{§lp},v,u} which are identical exceﬁt possibly

for the feasible action sets D and D' . Suppose that there is an
information system 7 and that D and D" are the respective

sets of feasible decision strategies which use the information sys-

tem 7 . Given the state of experience & and respective decision

strategies for models M and M' , we say that decision variable

dj is less flexible than d; if ﬁ? is a proper subset of 53

(denoted ﬁ? - 5?' -

The decision variable dj will be said to be flexible or inflexible de-
pending upon whether or not the set 5? consists of more than a single
(point) element.

Notice that although flexibility is a property of the decision set
for dj » in general, it will depend upon the decision settings for all
other decision variables. This corresponds to the common situation in
which an action taken now is a decision among later choice sets. Per-
haps the action is to acquire a choice set. Perhaps the action is to
narrow down an earlier choice set. The decision on whether or not to
make the deposit in the sofa-purchasing example can be interpreted in
either of these ways. In such cases defining flexibility as the size
of the decision choice set is intuitive.

The definition gives us some clues for increasing the flexibility
of a decision variable. One method is to choose the setting of g-dj
(which we mean to denote those decision variables in d with the excep-
tion of dj ) so as to yield a large choice set for dj . This is what
we did in the sofa-purchasing example. Another is to uncover new al-
ternatives so as to increase the size of the set D of feasible deci-

sion strategies. Both techniques can be used to analyze the effects of

increasing flexibility; the distinction is between an implicit and an

explicit evaluation.

1.4 PLANT FLEXIBILITY

In this section we shall apply our definition of relative flexibil-
ity to a classical problem in micro-economic theory. The problem has to

do with choosing production flexibility in the theory of the firm and is

schematically illustrated in Fig. 1.6. A number of various designs for

-15-
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FIGURE 1.6 PLANT FLEXIBILITY DECISION PROBLEM

a production plant are possible. The particular design chosen will de-
termine the output capacity for the plant. At the time plant output
capacity is chosen, output price and, therefore, optimal output are not
known with precision. However, a probability distribution on output

price is knowm. After the plant has been constructed output price is dis-
closed, and plant output is set so as to maximize expected profit. It

is desired to determine the manner in which varying the plant's output
flexibility affects expected profit.

Baumol {1, p. 93] argues that '"the existence of uncertainty will
lead to the (increased) use of cquipment whose scale of operation is
flexible." We shall explore this conjecture using two simple models.

The first model was devised by Marschak and Nelson [10] and uses Stigler's
[13] measure of plant flexibility, a measure which is incompatible with
our own. For Stigler, flexibility refers to the rate of change of the
plant's marginal cost curve. In the second model, plant flexibility is

measured in a manner consistent with Definition 1.3.1.

MODEL 1

Assume the various plant designs are described by quadratic total

cost curves,

TC = ax2 + bx + axi ; (1.4.1)

where x 1is output quantity. Average cost is then

-16~-




2
X

AC = ax + b + a —=&
X

and
2
dAC(xm) d AC(xm) 2a
AC(xm) = 2axm + b, =g 0, = o (1.4.3)
dx m

Thus, the quantity X~ represents the output with minimum average cost,
and the parameter a measures the curvature of the average cost curve
(Fig. 1.7). The smaller a is, the flatter the curve at its bottom.
Following Marschak and Nelson and Stigler, we shall use 1l/a as a meas-
ure of the plant's flexibility to produce outputs other than that origi-
nally planned. According to Definition 1.3.1, however, all such plants
would be termed equally flexible since, regardless of a , any output
along the positive real axis is feasible.

For price P , profit is given by

T = Px - ax2 - bx - axi ; (l.4.4)

COsTS

{OUTPUT QUANTITY)

FIGURE 1.7 TOTAL AND AVERAGE COST CURVES
FOR PLANT FLEXIBILITY MODEL 1
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Assuming P > b , the profit maximizing output

X% =

5a (1.4.5)

produces an optimal profit

- . 1.4.6)
A ax_ (L.4.6)

0 I . = F 2
Now, suppose price is distributed with mean P and variance o

Expected profit is then given by

E () --L;Tbﬁ ] axri+2—z . (1.4.7)
On obtaining this result, Marschak and Nelson make the observation that
as subjective uncertainty increases (as measured by 02), expected profit
for the more flexible plant (small a ) rises relative to expected pro-
fit for the less flexible plant (large a ). Broadly interpreted, this
supports Baumol's claim.

Yet, we are still left with the question of whether 1l/a 1is a good
measure of production flexibility. One disturbing feature of this meas-
ure is that in the absence of uncertainty (nz = 0) expected profit still
increases as a decreases. If price is known with certainty, should not

the potential for adjusting to different prices have zero value?

MODEL 2

This time we assume the various plant designs are described by total

cost curve of the form

‘ ax2 + bx + aﬁi sy X <X+ A
TC -l & (1.4-8)

® y, X >x+A

The maximum output which can be produced from such plants is X+ A 5
and, therefore, the magnitude of A determines the size of the plant

output choice set. Following Definition 1.3.1, we may take A to be a

-18-
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measure of the plant's output flexibility--the larger A 1is, the
greater the plant's flexibility over its output setting.
Average cost is given by
x2 &
ax+b+a?m, X <x +A

AC = : (1.4.9)

Once again, X0 represents the output with minimum average cost (Fig.
1.8). For outputs less than X + A , profit maximizing output and opti-

mal profit are given by expressions identical to those of Model 1:

P-b

k= B2 (1.4.10)
2
rkk-ig—i-a—bL-axri, b <P <2a(x+A) +b . (1.4.11)

If price exceeds 2a(§ + A) + b , the maximum output x4+ A will be

chosen and profit will be given by

e (- BR4A) - aix+a) - ax:‘ , P >2a(x+A) +b. (1.4.12)

TC
|
AC
(74
=
Yy
o
) |
2axm +b ! | i
i : % = 3
o % X i+ A ’i
m
x ;
{OUTPUT QUANTITY) i

FIGURE 1.8 TOTAL AND AVERAGE COST CURVES
FOR PLANT FLEXIBILITY MODEL 2
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Suppose price P is normally distributed with standard deviation
o and mean P = 2ax + b . (Actually we should have P strictly
greater than b to insure that the optimal output is positive, We as-

sume that the probability of obtaining a P <b with the normel dis-

tribution is small enough to have a negligible effect on the analvsis.)
The quantity x represents the expected plant output,and A is the
amount by which maximum plant capacity exceeds the expected operating
output. Since minimum average cost is 2axm A2 DI it X exceeds X
the plant may be expected to make a profit. Denoting by n(x;m,c) the
normal probability density with dummy variable x , mean m , and stan-

dard deviation o , the expected profit lost by not choosing a completely

flexible plant is

o
0

E(Wi' T\k) = I (% - Tﬁ) n(P;2ax + b,s) dP
2a(X+A)+b’ i

p r” [P-2a(% + A)- b]2

2a(F+A)+b 4a

n(P;2ax + b,s) dP

- 7 - (y - —ziA)z n(y;0,1) dy , (1.4.13)
4a 2aA/ & o

where we have used the change of variable y = (- 2ax-b)/s . As an aid to

evaluation, the integral

1234, [y - 282 0(y:0,1) gy (1.4.14)
g ZaA/o" a

has been plotted in Fig. 1.9. Observe that the difference in expected
profit between the completely flexible plant (A = =) and the plant
with minimum flexibility (A = 0) is 02/8a . Since expected profit
for the completely flexible plant is [(i-b)z]/aa - ax; + 02/4a . we
have

2
E(T) =1 - I%A)] 5 e x2) . (1.4.15)
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Finally, observe that

3E (k)
LA L0 ' (23A
A 5 - 1)) >0, (1.4.16)
I' denoting the derivative of I . Each of the two factors in (1.4.16)
increases with o . Thus, the gain in expected profit achieved through

flexibility is larger, the greater the price uncertainty as measured by
o . If there is no uncertainty (o = 0), there is no advantage in having
flexibility; but, as ¢ increases, expected profit for a more flexible
plant rises relative to expected profit for a less flexible plant. This
model not only supperts Baumol's claim, it also conforms well with ou:
intuitive notions of how the value of flexibility should depend on uncer-

tainty.

CONCLUSIONS

Our definition seems to perform reasonably well when applied to the
problem of determination of plant flexibility. Notably, it leads to re-
sults which conform with our intuitive feelings. However, unlike
Stigler's definition, ours says nothing about the relative costs of vary-
ing a decision variable over a choice set. While this may seem to be a
serious limitation, we shall see that there is an important application
to problems in which we ignore the costs of varying pre-set decision

variables. This topic is the subject of Chapter 2 oi the thesis.
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CHAPTER 2
THE VALUE OF TNFORMATION GIVEN FLEXIBYLITY

Everything else being equal, we would all agree that the more flex-
ible of two plans is the more desirable. Everything else, however, is
usually not equal. A more flexible strategy is typically more inconve-
nient and often more costly to follow. Therefore, an economic measure
of the value of flexible over inflexible plans ought to be quite useful
to the decision maker. 1In this chapter we seek such an economic measure.

The example in the latter part of Chapter 1 has already demonstrated
a simple and fundamental rule concerning the value of flexibility: The
more you expect to learn in the course of a decision (the more uncer-
tainty will be resolved), the more it pays to follow flexible decision
strategies. The value of flexibility is thus dependent upon expected
information. However, we can turn the argument around: The more flex-
ible your decision strategy, the greater the value of information-gather-
ing. In terms of value, the concepts of information and flexibility are
inseparable. If you have no flexibility in your decisions, information
has no value. If you expect to receive no information, there is no value
to having flexible decision rules.

Therefore, what we really seeck is the value of a given amount of in-
formation and flexibility. We are in luck. With just a little ingenuity
we can turn the well-known expected value of information calculation from
decision theory into a calculation that will tell us the economic worth

of any combination of information and flexibility.

2.1 PERFECT INFORMATION GIVEN PERFECT FLEXIBILITY

The simplest case, which we now present, will demonstrate the re-

quired logic for economically evaluating information with flexibility.
Suppose that the decision model is the basic decision model of
Fig. 1.4 and that the time order of the decision process is as illus-
trated in Fig. 2.1. The decision maker must choose the action vector
d so as to obtain a value lottery with the highest utility. The de-

sired value of d , denoted d* , will be the solution to

=23




DECISION NATURE

MAKER SETS
> G * OUTCOME
SETS d s

FIGURE 2.1 DECISION PROCESS WHEN
NEITHER INFORMATION NOR
f FLEXIBILITY IS AVAILABLE

d* = max-1 r"u\gl_,f'> . (2.1.1)
daed

: Equation (2.1.1) is merely a restatement of Eq. (1.2.2) using the infe-
: rential notation described in Section 1.2. Use of this decision strat-
egy will result in a maximal expected utility which we will denote by

; .
3 ule> :

. <ule> = -uld¥x,e> . (2.1.2)

Now, suppose that a clairvoyant offers us perfect information on the
outcome of state variable 5: but that we are restricted to using such
information only for the setting of decision variable dj . In other
words, at the time the ith state variable is revealed, fiexibility
exists only on the jth decision variable. Schematically, the time order
of the decision process is now as illustrated in Fig. 2.2.

The maximum amount of money the decision maker should be willing
to pay to convert the decision problem in Fig. 2.1 to the decision prob-

lem in Fig. 2.2 we define to be the expected value of perfect information

% on state variable 55 oiven perfect flexibility on decision variable gj

DECISION DECISION DECISION NATURE

MAKER MAKER MAKER SETS
» —> :Q & OUTCOME
SETS d-d, SEES 3, SETS d 5

FIGURE 2.2 DECISION PROCESS WITH PERFECT INFORMATION ON s, GIVEN PERFECT
FLEXIBILITY ON di



The information is said to be perfect because it totally eliminates uncer-
tainty on the ith state variable. The flexibility is said to be perfect
because receipt of the information does not in any way limit the basic
alternatives available for the jth decision. The cxpected value of per-
fect information on s; given perfect flexibility on dj , denoted
<VCsiFdj|8\ » may be obtained from an expected value of perfect infor-

mation calculation in which only the flexible decision variable is ad-

justed to compensate for the given information.

CALCULATION PR(CEDURE

Let information on s; given flexibility on dj be purchased at

a price p . Calculation of /VCSiFdjlex' proceeds as follows:

1. Find the optimal decision strategy for decision variable d,

-1 -
) . - q s e, o 9
dg(sihg dj) max uls,d,p, {slsi,u} . (2.1.3)

i s-s,
8 2

2. Solve for the optimal decision settings for the remaining decision

variables.

(g-d])* = max-1 <Ulst,d§gﬂ'dj,P’8‘ ‘s,

|
d-d. s. L
- i

IR (2.1.4)

3. The utility of the lottery with information on S5 » flexibility

on d. 1is then o 3
j .

<ulCs,Fd,,p,&> = ~uld¥(d-d ) *.p,e> . 2.1.5

lcs, j°P I $(d-d)*.p ( )

4.  The value of p which satisfics '
/UICSiFdj,p,P’-= a8 (2.1.6)

is defined as the evxpected value of perfect information on s.

given perfect flexibility on dj




PERFECT INFORMATION ON A SET OF STATE VARIABLES GIVEN PERFLCT FLEXI-
BILITY ON A SET OF DECISION VARIABLES

Perfect information on a subset of state variables, say all S5
i elc {l,...,n}, given flexibility on some subset of decision vari-

ables Jc {1,...,m} , would be defined as the information

idjfj g et
structure in which the value of each Si s i ¢ 1 was revealed to the
decision maker prior to his setting of the decision variables d. ,

j € J . The value of such information given flexibility would be de-
fined and calculated in an obvious way following steps similar to 1-4
above., If the decision maker is allowed to adjust all decision variables
in response to information, we say that he has information given complete

flexibility. This is the usual assumption for the analysis of informa-

tion in decision theory literature.

CASE OF LINFAR UTILITY

A special case in which the value of information given flexibility
is especially easy to calculate occurs if the utility function is linear
in value. 1In this situation, if CsIFdJ denotes the information struc-
ture with clairvoyance on state variables Si s i ¢ I and flexibility
on decision variables dj » j eJ , then the value of this information-

flexibility structure is given by

- (¥ = o
/'VCSIFdJ F>= <v|Cs Fd ,E> W& (2 e 7))

Equation (2.1.7) is easily proven. Taking the example of Fig. 2.2 and
assuming u=a+bv, b#O,

/uleiFdj,p,€> = <u|8> = a + b(fV‘CsiFdj,6> - p) - a- bale>

- b(<V|CsiFdJ.,8> - wles-p) . (2.1.8)

By definition, when p = <VCs-Fdj15> , the left-hand side of (2.1.8) is
i
zero, implying

) |€> = ~v|Cs Fd_,f> - wvle> . (2.1.9)
Ly

Cs,Fd,
L)
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RELATION OF INFORMATION GIVEN FLEXIBILITY TO DEFINITION 1.3.1

Information given flexibility increases flexibility, as defined in
Chapter 1, by increasing the size of the decision set D . As a result,
the decision set for dj 4 ﬁ} , 1s larger both for the prior state of
experience € and for the posterior state of experience (si,B) c

When the state of experience is € and the model is as illustrated
in Fig. 2.1, the feasible decision set consists of all m-dimensional
vectors lying in some subset D of the Euclidian space E" . Using the

notation of Chapter 1,

D‘j’(e) - {dj |(dc1),...,d?_l,dj,d?+l,...,d:l) ¢ D,E‘;}. (2.1.10)

If the model is as illustrated in Fig. 2.2, the jth decision variable is
more flexible than (or at least as flexible as) the model of Fig. 2.1

since dj may now be a function of s, ¢

o! ) ) ) )
D, (€) = {dj(-)\(dl,...,dj_l,dj(si),dj+1,...,dm) eD

for all si,S} c (2.1.11)

Because the set of functions from the space of s; to E1 includes the
1
real rumbers as a trivial case, D?(e) g,D? &)
Once the information g becomes known, in the case of Fig. 2.1

the feasible decision set for dj consists of a single element,

D‘j’(si,e) -{d?}. (2.1.12)

However, in the case of Fig. 2.2 it consists of all real numbers that

put d in D:

o' il .0 0 o )
Dj (si,e) A{dj|(d ,...,dj_l,dj,dj+1,...,dm) eD,si,E}. (2.1.13)
Hence,

1
D‘j’(si,e)g D‘J? (5;.8) .

i




2.2 APPLICATIONS OF THE EVPIGPF

Just as the expected value of perfect information (EVPI) is a useful
yardstick for evaluating information-gathering systems, the expected
value of perfect information given perfect flexibility (EVPIGPF) is use-
ful for evaluating information distribution systems.

Suppose a decision maker is considering the construction or pur-
chase of some information-gathering and distribution system. The cost
of the proposed system will consist, first of all, of information col-
lection, tabulation, and storage costs. In addition, however, there will
be costs involved in having a particular piece of that information avail-
able at a specific time or available to a specific individual in the
decision process. Different information distribution systems will incur
different costs, just as systems which gather different information have
differing costs. By placing a value on completely resolving specific
uncertainties for specific decisions, the EVPIGPF allows the decision
maker to consider seriously only those information-gathering and distribu-
tion schemes whose costs do not exceed this value. It may thus be used
to evaluate the various information-distribution structures that might be
used in a given resource commitment problem.

We can state this use somewhat differently in terms of evaluating
flexibility rather than information. Although decision analysis method-
ology implicitly assumes decisions to be irrevocable, in many cases deci-
sion variables can be reset at some cost. As stated by Howard [8, p.
507],

An executive viewing the results of a decision analysis

may think: "It couldn't come out that bad because I

would have done something about it." The analysis does

not generally take into account the ability to compen-

sate for ultimate state variable changes through adjust-

ments in decision variables.
Flexibility provides a means, and the EVPIGPF provides a measure of the
value of taking into account the possibility of compensating for ultimate

state variable changes.

EXAMPLE: THE ENTREPRENEUR'S PRICE QUANTITY DECISION g
An entrepreneur must decide upon a price and quantity for his

product. ile is uncertain about the total cost ¢ per item but feels

gs

3
1
|
i
371



that it may be represented by the uniform distribution of Fig. 2.3. He
knows that the demand for his product will be a decreasing function of
his price, but for any given price he is uncertain as to the exact

quantity of his product demanded. For this reason he hypothesizes the

following functional form for demand x :

-b-ce, (2.2.1)

where

b
N

demand (in thousands of units),
p = price (in thousands of dollars),
b

= parameters of the demand curve, and

[¢1]
]

a random variable independent of ¢ and uniformly

distributed from zero to onec.

Figure 2.4 shows the probability density for ¢ and the demand curve

x(p) . Further let

4 = quantity produced (in thousands of units) and

v = net profit (in millions of dollars).

We wish to determine our entrepreneur's expected net profit and the
value to him of using numerous perfect information-perfect flexibility

Structures. In other words, we would like to know how much it is worth

0 ¢ = TOTAL COST PER ITEM
} {in thousands of dollars)

c

FIGURE 2.3 PROBABILITY DENSITY FUNCTION
FOR PRODUCTION COST IN THE
ENTREPRENEUR'S DECISION
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FIGURE 24 THE DEMAND CURVE AND THE PROBABILITY DENSITY FUNCTION FOR THE
DEMAND PARAMETER e IN THE ENTREPRENEUR'S DECISION

to the entrepreneur to obtain perfect information on various state vari-
ables if he uses that information when setting various decision vari-
ables. 1In all there are 3x3 = 9 possible information-flexibility
combinations (excluding the null structure).

The computations are performed in Appendix B and summarized in
Table 2.1 for particular parameter values of a = 2.25 and b = .5
Observe first of all that the expected value of the entrepreneurial
venture is half a million dollars and is obtained through an optimal
decision strategy of setting price at $1,000 and quantity at 1,250
units. The entries in the table-- VCF ,» P* , and g% -- respectively
denote the value of the information-flexibility structure and the op-
timal decision strategy appropriate to the structure corresponding to
a given location in the table. For example, the value to the decision
maker of obtaining clairvoyance on the demand parameter e for the
purpose of setting his production quantity q is $128,680 . It may
be possible for our entrepreneur to pick a price, estimate the demand
parameter ¢ through a market survey or trial marketing venture, and
then set his quantity. According to the table, if he does this he
should set price at 1.061 thousand dollars, conduct his estimation of
2 , and then set quantity at 1.621 - e thousands of units. Further,
this action should only be considered if a good estimate of ¢ can be
obtained for under $128,000.
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Knowledge of EVPIGPF's can generate insight that is not provided by

EVPI's alone. For example, observe that the value of clairvoyance on
costs given flexibility on price is zero, but the value of clairvoyance
on costs given flexibility on price and quantity is $139,416. Informa-
tion about costs is useful for setting price but only if that informa-
tion is used for setting quantity as well. Once quantity has been
fixed, price must be set so as to clear the inventory and costs are no
longer a consideration. Insight may also be provided on decision tim-
ing. If information on the demand parameter e is purchased, vir-
tually all the usefulness of the information, $151,639 worth, can be
obtained using it only to set price Delaying production until after

this information becomes available will only be worth an additional i
$285!

2.3 INFOP*.ATION GIVEN PARTIAL FLEXIBILITY

We referred to the above calculations as situations of "perfect
information with perfect flexibility." This is because a clairvoyant
was imagined to have provided us with perfect information on the out-
come of state variables, and we presumed that decision variables could
be set anywhere within the feasible action set. In many cases the ap-
proximation of the clairvoyant is not satisfactory for the evaluation
of an information-gathering scheme; we must consider the purchasing
of an information signal or experiment rather than perfect informa-
tion. This presonts little conceptual difficulty, however, as Bayes'
equaticn allows us to calculate the offect of experimentation on our
prior distribution. Hence, we can evaluate the economic impact on our
profit lottery.

Similarly, the delaying of a decision so that more information may
be gathered may well restrict the range over which that decision vari-
able may be varied. If our entrepreneur were living in our present day
of shortages and potential government legislated price freezes, he
might find that a short delay could seriously restrict his range of
feasible output quantities and prices.

The model appropriate for representing diminished flexibility de-

pends on the nature of the problem being investigated. 1In some cases,

S0
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E flexibility for a particular decision variable is itself a decision

under the control of the decision maker. Contracts may be negotiated

R il b

which spell out in legal terms the latitude available for some action.
A specific example would be the purchase of an "option to buy" so many
units of some commodity. In other situations, the restriction of flex-
1bility is the work of Nature and under little control of the decision

maker.

A MODEL FOR PARTIAL FLEXIBILITY
A fairly general model for evaluating information and flexibility
is the following. Imagine that for a price p , instead of having to

set d prior to learning s , our decision maker takes some action £

E
|
s:
|
|
E
:
f?
g

which is designed to preserve a measure of flexibility on the jth deci-
sion variable dj . The flexibility is preserved until after an infor-
mation system rn can be made to produce a signal y from some set of
possible signals Y ,

The precise flexibility maintained for d. will, in general, de-
pend upon both g-dj and, s . sLet D;(Q-dj,ﬁ) denote the choice set
for dj faced by the decision maker if the flexibility producing ac-
tion is taken. The primary decision problem and the decision problem
with the information system and partial flexibility are illustrated in

Fig. 2.5.

PRIMARY DECISION PROBLEM

NATURE
DECISION SETS
tG + OUTCOME
MAKER SETS s
d

DECISION PROBLEM IF ACTION f IS PURCHASED

0 1

NATURE
l DECISION INFORMATION A CHOICE SET DECISION SETS
~Q > :O — OUTCOME

MAKER SETS SYSTEM YIELDS O} REVEALED MAKER SETS s
d-d, SIGNAL v d, WITHIN D'j

FIGURE 25 PRIMARY DECISION PROBLEM AND iSECISION PROBLEM WITH INFORMATION
SYSTEM AND PARTIAL FLEXIBILITY ON di

PRy Ll r a2




Value of Information Given Partial Flexibility

The value of the information system n with the partial flexibil-
ity on dj is defined as the maximum price p our decisior maker
should be willing to spend to achieve the problem conversion shown in
Fig. 2.5.

Calculation of this value for the general model described above
will, in most cases, be quite difficult, so a number of additional as-
sumptions are likely to be made. We shall illustrate the calculation

under two additional assumptions:

1. The choice set D; is uncertain but indepeni?nt of g-dj

2. Choice set unce?tainty is limited so that Dj must be one of
t?e K sets Dj(k) » k= 1,...,K . The probability that set
Dj(k) results given that the information signal is y i3

P ()

For notational convenience we shall also assume that any information
on s that our decision maker is able to deduce from the outcome
D§(k) has been incorporated into the signal y . (Following the usual
assumption of information analysis we assume that the data y 1is inde-
pendent of the actions d )

To begin the calculation, assume that the choice set is D§(k)
and the signal is y . The optimal feasible action for dj will be

the solution to

QJ'_d“d-’y’Df(k)aPsF‘) = maz: r<U'_<_],§, € (S|y,e} ’ {2.3.1)
J J djeDj(k) 5" H

where the posterior distribution fsly,e} 1is given by Bayes' equation
(1. 1.3). Now, Pr(y) 1is the probability that the choice set will be
Dg(k) given that the signal is y , and fylel is the preposterior
probability that the data y will actually be obtained. Therefore,
the expected utility of the optimal decision strategy, given the in-

formation gathering technique n and partial flexibility on dj pur-

chased at a price p , is

= Syrd




K

f
<u|n,f,p,E> = nax V'-«11'9-djey,Dj(k),p,f‘> p.(¥) fyle} . (2.2.2)

i
il-dj ye¥ k=1

Finally, the value of p that satisfies
aln, f,p,8> = ules (2.3.3)

is the value of the information system 7 with the partial flexibility

on dj produced by action f .
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CHAPTER 3
DECISION MODELS WITH QUADRATIC VALUE FUNCTIONS

In this chapter we shall exploit the special characteristics of a
quadratic function in an ~ffort to gain a better understanding of the
value of obtaining information given flexibility. The analysis will be
built around the basic decision model of Fig. 1.4 for the special case
in which (1) the decision maker's value function is quadratic in both
state and decision variables, and (2) the decision maker's utility
function is linear in wealth.

Almost all of the essential features of the quadratic problem are
present in the case in which there are two state -ariables and two deci-

sion variables. Consequently, we begin the analysis with the following

example.

3.1 EXAMPLE: A FOUR-VARIABLE PRODUCTION PROBLEM

A firm produces two outputs using fixed proportions of two inputs.
Each unit of output one requires a, units of input one, a, units of
input two. Similarly, each unit of output two requires b1 units of
input one and b2 units of input two. The marginal revenue produced
by selling the two outputs smoothly diminishes as the quantity of
either output increases ("diminishing marginal returns"). Specifically,
we assume that the revenue is a quadratic function of the respective

output quantities 3 and X,

g + 29X, %X, + w.x, + w.x. + h . (3.1.1)

2
Ri=-x)-x ) ST M Wops)

Output units have been chosen so as to make the coefficients of the
quadratic terms -1 . The quantity q measures the complementarity
(-q the substitutability) between the two output products.

Let the respective per unit prices of the inputs be

P =™ + 5 and P, = m, + S, > (#3741552)

where m, and m, are mean prices and sy and s, are random

- 36~
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variables with zero expectations. The net profit to the firm will be

(see Fig. 3.1)

2 2
e -Xy) - X, + 2qx1x2 + Wiy + W)X, + h

- xl_(alp1 + a2p2) - Xz(blpl + b2p2) . (3.1.3)

Our objective is to determine the quantities Xy and Xy that
will maximize expected profit. Let us measure these quantities from

the values §1 and X, that would be optimal if the input prices are

2
at their mean values. Since Hzﬂ/Bxf = Bzﬂ/ax% = -2 , Bzﬂ/axlaxz = 2q ,

the concavity condition

5
AT Azn
A% 2 oK, X
e 1 12
——P’x]-z < 0 >’2,_ azﬂ >0 (3'1'4)
X, A .2
1 2 !‘Xz

INPUT 2

QUANTITY QUANTITY A

)
PRICE N OF QUTPUT OF OUTPUT T\ PRICE
INPUT | B4 . 2 o, |} INPUT
L x _gj 2

*1 2

beeep{  MARKET | —————d

REVENUE
R
+

COsT
INPUT 2

COST
INPUT 1

PROFIT

FIGURE 3.1 A FOUR-V/ARIABLE PRODUCTION PROBLEM
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is satisfied for |ql 1 . This assumption insures that for every com-
bination of Py and Py s 7T has a unique maximum. Putting prices at
their mean values, differentiating, and setting the results to zero, we

obtain

Wy - agm -am, + q(w2 - bm, - b,m.)

- L] 22
1 2 .
2(1 - q7)
(3.1.5)
- q(w1 - am - a2m2) + Wy blml - b2m2
X, = > .
2(1 - q7)
Defining dy and d2 as deviations from these values,
X, = d1 +x; and X, = d2 + X (3.1.6)

profit, in terms of the deviations dl and d2 of the output levels

from their deterministic optimums and in terms of the deviations Sy

and S, of the input prices from their mean values, is given by

- 2 2
11@]f52,d1,d2) = -d1 - d2 + 2qd1d2 - dl(als1 + a252) - d2(b1s1 + b252)

- ‘.cl(als1 + 2,8,) - xz(bls1 + bzsz) R (31175
where
T - "(;13;(2;7“1!“12) (3.1.8)

is the maxiawum profit if input prices are set at their mean levels.
Since the last three terms in (3.1.7) do not depend on the decision
variables, for the purposes of optimization we may redefine the profit

origin and take as our value function
V(s slldr dH = -d2 - d2 + 2qd.d, - d.(a,s, + a.s
1°72°71° 72 1 2 172 IR 272

- dy(bys; + b,s,) . (3.1.9)
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Notice that if q were zero the value functicn in (3.1.9) would

be additive, that is, oi ihe form

v s;dl’d2) = vl(§;dl) + v2(§;d2) . (3.1.10)

Thus, q 1is a measure of the interaction between the decision vari-
ables. The quantities within the parentheses in (3.1.9) are the devia-
tions from mean vialues of the per unit output cests for outputs one and
two. The parameters ay a, b1 , and b, measure the interaction

2
in the value function between the various state and decision variables.

We shall assume that s, and s, have the bivariate normal
distribution
SELR2 5.8 S
» 1 1 1 172 2
{5152‘("=——exp[——§-‘_<‘:‘? SR 20 il (T\ .J]}
e 2 Co2(1-,7) M1 12 2
A 31951518
The quantity  is the correlation coefficient and indicates the ex-

tent to which the variables tend, on the average, to move together or

in opposite directions. It is easy to show that

E(SISZ) = 000, (3.1.12)
(s, I i (3.1.13)
}‘1(52 bl) = 9 '11 Sl . 0 O

We shall now proceed to calculate the optimal decision rules and
relative values under cach of the possible perfect information with
perfect flexibility structures. In each case the optimal dacision

rules were obtained by differentiation.

CASE 1: NO INFORMATION (NO FLEXIBILITY)
vl = gaﬁ E[-d, - d, + 2qd1d2 - di(ays) + ays,) - dy(bys, + b252>]
19%2

N, (3.1.14)

d¥ = dfzf =M ()} (3.1.15)
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Because <v|€> = 0 , the value of any information given flexibility

structure, <v|CF,f>- <v!f~ , will simply equal the expected payoff
<v|CF,e> .

CASE 2: COMPLETE INFORMATION - COMPLETE FLEXIBILITY

<vlelstdld2,8> = E[ max v]
919

2 2. 2 2 2. 2
(8)429a,b,4b)) o) + 2[ajajkq(a;byta b))+ b, Jom) o +(aj+2qa,b,+b0) oy

2
4(1 - q7)
(3.1.16)
X a;s; + a,8, + q(bls1 + b252
dipels 7 ’
2(1 - q")
(3.1.17)
S q(als1 + a252) + bls1 + bzs2
2

2(1 - 4%

Defining ¢, = a8, + ay5, » c, = bls1 + b252 to be the deviations of

the per unit output costs from their mean values,

c, + qc qc, + ¢
at = - _J;_____%- and df = - --L————%- . (3.1.18)
2(1 - q7) 2(1l - ¢9)

Observe that if the outputs are complements (q > 0) , [substitutes
(@ < 0)], the optimal output quantity falls as its cost rises and

falls [rises] when the cost of the other output rises. Expressing the

optimal decision rule as

] (a1+qb1)sl+(a2+qb2)s2 i oL (qa1+b1)sl+(qa2+b2)s2
2 2 2
2(1-97) 2(1-q97)

kN =
dl

(3.1.19)

we see that the optimal quantities will normally fall when an input

price is increased. In order for the reverse to be the case, we must
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have either little coupling between the output processes ( a, or b
close to zero), or the products must be strong substitutes.
We may also write (3.1.16) as
nz + 2qrc_ o + 02
‘1 LR a2
41 - a9

<v|CslSZFdld9,€> = . (3.1.20)

B

3]
[ |

E(cé) , and

3
1}

(a1
[ ]

E(c,c

( 1 2)/Oclob2
Observe that the advantage of making decisions with full knowledge of
costs is larger, the larger the product (qr) of the coefficients of
interaction and correlation. If correlation between output costs is
positive, the advantage is larger if the output products are comple-
ments (q > 0) . If correlation is negative, the advantage is larger

if the outputs are substitutes (q < 0)

CASE 3: PERFECT INFORMATION ON s, - COMPLETE FLEXIBILITY

1
<v|CSleld2,8> = E [dmix E (V|Sl)J
=10 S0 B0
82 2907 2 2P 52
f (a+2qa;b+b]) o) +2[albl+q(alb2+a2bl)+a2b2]ooln2+(a2+2qa2b2+b2)o Ty
2
4(1 - q)
2 2
’cy v 2qr«C1qC2 N e, @ - 02)”3 2 2
- 5 = 5 (a2 + 2qa2b2 + bz) s (3.1.21)
4(1 - q°) 4(1 - q)
a1+a2p T +q(b1+bzp —:) q(al+azp ?)+bl+b20 :‘ :
df - L - s and d¥% = L L s
! > 1 S0E i 2 T
2(1 - q°) 2(1 - q°)
(3.1.22)

~ M




The decision functions (3.1.17) are identical to (3.1.22) except

that in the latter case the random variable s. is replaced by the

2
estimate E(52|sl) = 0(02/01)51 . This is an illustration of the well-
known certainty equivalence principle: When the value function is
quadratic, in the face of uncertainty the decision maker behaves as if
he were certain that random variables take on their expected values.

Subtracting (3.1.21) from (3.1.16) we obtain the value of obtain-

ing clairvoyance on s and s, over the value of clairvoyance on $q
alone.
(1_p2)ﬂ2 »
<V cslstd1d2’€> = 'chled1d2’€> = 5 (32+2q32b2+b2)
4(1-97)
(3.1.23)

Clairvoyance on s and s, over clairvoyance on 1 is more valuable
the smaller the correlation (positive or negative) and the larger the
variance of Sy - As a function of the interaction q , the value ap-

pears as illustrated in Fig. 3.2.

{”'°‘1‘2F“|dz'P} & tWICsIFd‘dz,E}

| -

| -9

b:( 32 @ !
-="OR --=
32 I:|2

FIGURE 3.2 THE ADDITIONAL VALUE OF CLAIRVOYANCE ON s, AND
s, OVER THE VALUE OF CLAIRVOYANCE ON s, ALONE

AS A FUNCTION OF q IN THE FOUR=VARIABLE PRODUCTION
PROBLEM
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CASE 4: PERFECT INFORMATION ON s

9 COMPLETE FLEXIBILITY
By symmetry,

2 2
o‘:1+2qm‘:16‘:2+cy‘::>. (1-p") Gi 2 2
<V|C52Fd1d2,8> - (aj+2qa by+b]) .

4(1-q%) 4(1-q%)

(3.1.24)
It is interesting to compare the value of clairvoyance on

S with the
value of clairvoyance on

Sy - Subtracting (3.1.24) from (3.1.21),

<v|Cs Fd,d,,&> - <v|Cs,Fd,d,,E>

(- 2
s 2 [(af+2qalb1*bi)of-(a§+2qa2b2+b§)o§] (3.1.25)
4(1-q7)

Which information, s, or s

9 is more valuable depends on the vari-

op and oy and also on the relative proportions in which the
inputs are used.

ances

If the input prices are strongly correlated, which
of the two prices is ascertained is not important.
It is well known that the value of simultaneous information on

several variables may bc greater than or less than the sum of their
individual values of information.

Subtracting (3.1.24) and (3.1.21)
from (3.1.16),

2 2R
N (a1+2qa1br+b1)p op + 2[a1a2+q(a1b2+a2b1)+b1b2]polc2
2
4(1 - q7)
2 2, 22
. (a,42qa,b,+b,) 0" o,

5 (3.1.26)
4(1 - q)

As a function of the correlation coefficirit

p , this appears as in
Fig. 3.3. Observe that if the random variables are independent (p = 0),
then the value of clairvoyance on S1 » Sy equals the sum of the indi-

vidual values of clairvoyance on sy and on s

9 - The sign of
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FIGURE 3.3 THE JOINT VALUE OF CLAIRVOYANCE MINUS THE i
INDIVIDUAL VALUES OF CLAIRVOYANCE IN THE FOUR- ;

VARIABLE PRODUCTION PROBLEM
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<V|C5152Fd1d2,8> - /v|Cled1d2,p> - <N‘C52Fd1d2,F> depends on p and
q as illustrated in Fig. 3.4. As we might expect, if correlation is
high enough the sum of the values of individual information will ex-

ceed the value of joint information.

CASE 5: COMPLETE INFORMATION - PERFECT FLEXIBILITY ON d

1
2
<v|CslS')Fd1’€> = max E(max v) = _Cl
N d 4 4
2 2 2 2
a;o.+2a.a,po,a,4a, 0
_ A0 12412 2% (3.1.27)
a,s,+a,s c
1] 2 2. 2
oo O SR CSC T < * =
df 5 5 and d2 0. (3.1.28)

The value of flexibility on d1 » that is the value of choosing the
quantity of output one after input prices become known. varies di-
rectly with the variance of the cost of output one. Retaining flex-
ibility on the quantity of output one is a means of compensating for
cost changes in that output, the optimum rule being to decrease output
by one-half of the net increase in output costs. The value of that

compensation ability varies directly with uncertainty in the quantity

to be compensated for. The more uncertain a variable for which we may ]
compensate, the more valuable is the compensation. Notice that the re- 3

sult is independent of the degree of interaction q between the deci-

sion variables,

CASE 6: COMPLETE INFORMATION - PERFECT FLEXIBILITY ON d2 %

By symmetry
2
o 2 2 2 2
c, b101+2b1bzowldz+b202
<v|Cslstd1,87> EieThE A . (3.2.29)

Comparing (3.1.27) and (3.1.29) we see that it is more valuable to re- 3

tain flexibility on the output whose costs are more variable; that is,

other things being squal, compensation should be reserved for variables

whose values are most uncertain. Subtracting (3.1.27) and (3.1.29)

iy ok A L
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FIGURE 34 THE SIGN OF <vle152Fd'd2,e> - <v|Cs1Fd1d2,8> - <v|Cstd1d2,8> AS A
FUNCTION OF p AND q FOR THE FOUR“VARIABLE PRODUCTION PROBLEM
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from (3.1.16),

<V|C5152Fd1d2,€s - <N|C5152Fd1,6> - <v|Cslstd2,6>

2 2
qzaz + 2qres. o, +q 0,
Sl “1 S 2

4(1 - qz)

2 2 2.2, 2 2 2
i (q"aj+2qa b +q b)o} + 2[g a,a,+q(a; b +a,b,)4q blbzlpclcz

(1 - ¢%)

2 2 2.2, 2
A (g a2 + 2qa2b2+q bz)oé

5 (3.1.30)
4(1 - q°)

As a function of the interaction coefficient q this appears as in
Fig. 3.5. Observe that if there is no interaction between the decision

variables (q = 0) , then the value of flexibility on d, and d

1 2
equals the sum of the individual values of flexibility on d1 and on
d2 - If the input cost random variables are such that there is no cor-

relation between output costs (r = 0) , then the value of flexibility
on both d1 and d2 is at least as valuable as the sum of the values
of flexibility on each individual decision variable. In general, how-
ever, the value of flexibility shares that same (perhaps somewhat per-

plexing) characteristic of the value of information; <v|Cs s, Fd dy,€>

1525wl
may be greater than or less than the sum of <v|Cslstd1,6> and
<v|Cslstd2,6> . The sign of <v|Cslstd1d2,6> - <v|Cslstd1,8> de-

pends on 5 and q as illustrated in Fig. 3.6. 1If decision variable
interaction is high enough, we can expect the value of joint flexibility

to exceed the sum of the values of individual flexibility.

CASE 7: PERFECT INFORMATION ON $1 - PERFECT FLEXIBILITY ON d1

v

Cs.Fd. ,2> ®» max E[max E(v|s )]
11 d d 1
7 B Wy By

2
5 2 2 2 222
3 2, % 2 319 * 2313yp010,%a,p" 5,
-—4—- = (l-p ) —4 02 = Z i (3.1.31)
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~

- - * =
df 5 Sy and d2 0. (3.1.32)

: Subtracting (3.1.31) from (3.1.27),

2 "": 2
<v|Csys Fd, ,e> - <v|[Cs Fd),E> = (1-p) % 02 - (3.1.33)

The value of clairvoyance on Sy and s, over clairvoyance on Sy
when that information may be used only in setting d1 is independent
of the interaction q and the parameters describing process number

two. It is smaller the stronger the correlation @ |

CASE 8: PERFECT INFORMATION ON s, - PERFECT FLEXIBILITY ON d

1 2

] By symmetry,

] "’cz;z e bfcf+2b1b2pc102+b§pzo§

L Cs,Fd, 8> m —= . (1- )—-z-r* a

SO0 4 2o TR 5 4 :
(3.1.34)

3.2 THE N x M_QUADRATIC DECISION PROBLEM

In this section we shall generalize the results on the four-vari-
able quadratic problem to the case of a quadratic decision problem
with any finite number of state and decision variables. We take for
our general framework the basic decision model of Fig. 1.4 with the

following additional assumptions:

1. The decision variables dj are unconstrained, -+ <~ d, < « .
2, The decision maker's value function v s,d) is a quadratic
function in the s; and dj such that for every 5, v(s,d)
has a unique maximum with respect to d .
3. The decision maker's utility function is a linear function of
value.
We may think of the quadratic value function as an approximation to ¢

an arbitrary smooth value function v(s,d) as follows. Expand V(s,d)
in a Taylor series about the point o = (§°zg°) neglecting higher order

terms:
-50-




V(s,d) = v(s,d)

~ 2’\-‘
~ 2
= V(§0,§0) +op navi (s._sz) i 1 Sﬁ —a Vv (si-sg)(sj-sﬁ)

: Asi A i 2.{. %siAsj i
1 - ]-J o=
5 AV
AV o o
+) moad] (55 4—52 =3 @,-d
T i 9
1) = J &=
o
1 Y‘ Av 0 0
Y3 LN | Wpmdpsdp (3.2.1)
ij t Jd}=2

By suitably defining the real number a , vectors b and r , and ma-

trices W , T, and Q , this may be written

V(E)g) = g +l)"_s' +—; E'WE +§-'T g +£'_(] +_:]Z' ng g 1 (3'22) E
where ;
r | - i
Al ¥ f

T = stide O_k.l,,,,,n,j.l,_._,m (3.2.3)

is a matrix whose elements measure the interaction between various

L

state and decision variables, and

2%
[aa d 5 =1 «..,n,j=l,...,m (3.2.4)

e s

1s a symmetric matrix measuring the interaction between decision vari-

ables. Assumption (2) above implies that Q 1is negative definite.
AN EXPRESSION FOR THE EVPIGPF

We are interested in comparing alternative information with flex-

ibility structures in terms of the maximum expected payoff that can be

derived from their use. To characterize the various structu.es ve use

the following notation. Let N = {l1,...,n}) and M= |1, .,m} be ;
the respective sets of state and decision variable indices. Define ?
I N to be the set of indices of those stote variables upon which

information is to be obtained, and let JC M denote the indices of :
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decision variables for which flexibility is available. I and J will
denote the complements within N and M of the sets I and J, re=-
spectively. CsIFdJ will denote the information structure within which
the decision maker has clairvoyance on state variables S iel

and flexibility on decision variables dj sy jeJ.

It will be convenient to take as the origin for measurement of ex-
pected payoff the maximum expected payoff for the null system which
provides no information nor flexibility. Because of assumption (3)
above, the value of an information with flexibility structure Cs_Fd

IJ
will be given by

<stIFdJ|e> = <v|Cs Fd ,e> - «vles | (3.2.5)

Since we will be interested only in the relative values of using
various information structures, we ignore the first three terms in
(3.2.2). We shall also find it convenient to measure the decision vari-
able setting as a deviation from the best deterministic decision rule;
that is, from the decision setting that would be optimal if state vari-
ables were to take on their expected values. Replacing s by E(s)

and setting the gradient of (3.2.2) to zero, we get

d= -Q'l[T'E@) ] s (3.2.6)

Defining &d as the deviation from the deterministic optimum,

d -‘é + &d , the value function (3.2.2) may be written

v=[s'-E(s')] T 6d +-% 6d'Q 8d + terms independent of &d .
(3.2.7)
Thus, there is no loss in generality if we take i
1 %
v(s,d) = s'T d +54d'Qd (3.2.8) )
E

with E(s) = 0 , if state variables are assumed to be measured from
their mean values and decision variables are assumed measured as devia-
tions from the values that would be optimal if state variables were at

their means.
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In order to state the major theorem of this section we need to de-

fine some supplemental notation. For a given structure CsIFdJ , let
1 e the matri f se el ts t,, of T

T;; denote the matrix [tij]ieI,jeJ of those elemen i

such that i is in I and j 1is in J , and similarly define TNJ ,

QJJ 0 ij , etc. T&J and Q;i will be taken to mean the transpose
of TNJ and the inverse of QJJ respectively. Also, let 5S¢ denote
the vector of those components S5 of s such that i eI , and

similarly define QJ and 33 . Then, subject to the various assump-

tions made above, we have the

THEQREM: For any information-flexibility structure CsIFdJ , the
optimal decision strategy d* is given by

< -1 -1 ot -1 [ ’
43 = - Qyy3 Q5,057 (F3-Q3,Q, 11 DEGD) (3.2.9)

. -1 AT -1, 4
g '(QJJ'QJJQJJQJJ) (l_iJ-QJJQJJTI_J)E(-)-{I)

-1
-QJJ[TiJ§I + T%JLEI-E(ET)]] ’ (3.2.10)

and the corresponding expected value of the structure is

—l 3 -l ' t
<vCSII-*dJ‘&"\' -3 “a“{TNJQJJTNJE(ﬁ‘ )

-1 =1 Ui ThEL S
(g T1Q55007) (@3- 95,25,97) T‘ITT'QTIJQJJTTJ)EQ‘T)EQ‘T)} 2

(3.2.11)
where x = E(§L§I)

PROOF: We first note that the expected payoff using the null structure

is

<vi€> = max E(v) = max (% da'Q d) =0 , (3.2.12)
d d

since Q 1is negative definite. Therefore, the value of the struc-

ture CSIFdJ will be <v|CsIFdJ,F‘>. Now,

=g




E e R e S nali TN T e T T S S TR .
e abaaiCly MPE bk i jiel bl L S R R T T we—n L S P g r i o E v

<v|Cs Fd;»€> = max E[max E(v\s )]
oWy
= max E{max[x'T,, .d #x'T, .d +]' d d -(---l dlqj—d-]
i a. NI = "N-J 2-=J°JFJ =J JFJ 2 =-J'JFJ i
Tl B (3.2.13)

where x = E(§[§I) denotes the vector of conditional means. Since
Q 1is negative definite, the submatrix QJJ is negative definite
also. Taking the gradient with respect to d, of the quantity

J
within the inner bracket and setting the result equal to zero we

obtain

*B-
dj Q [T x+QJJgj] (3.2.14)

Substituting (3.2.14) into (3.2.13) gives

1« ' .
SR e “‘:f{ 7L Ty Qg Ty ] iiE(QEJQJJTNJ TP E) 1

& .;
1 . -1 . 3
2 7] g3(QTJ'QJJQJJQJJ)i‘:r]‘ : (3323L5)
Let us denote the inverse of Q by R and partition R in con-
formity with the partitioning of Q . Then we have
Gs 3| [ R R DECTCRS
= ) (3.2.16)
Srop il |50 B ou | BRIy
which leads to the equations %
Ul t URGF =T

GRF + Uikss
RAALS A SRR A % i % Sl

BRI+ HR =L (Flodialidl)
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in which I and O denote identity and zero matrices of appro-
priate dimension. Solving these equations for the elements of R
leads to the equations

1 -1

JJ (QJJ'QJJQJJQJJ) ’

-1 -1
73 ° U8 T Rty

=
|

=
1

1 o
Ryg = "OQ5,R 5 = ~RyQ34Qyy
ol g
Ryg = (395,007 - (Eotg o)

These relations are symmetric in that we can exchange the symbols
-1 -1
R and Q . For example, Q = (RJJ-RnRTJRjJ)
Using (3.2.18), (3.2.15) may be written

1 -1
|Cs Fd 8> = - 5 E(x'Ty QT %)

-1 ' ' 1 v -1
- mi;‘[$“ﬁ‘%JTNJ'RﬁTN3)E@)* 7 LR c(ER e
Since Q 1is negative definite, so is R , and therefore, so
are Rjj and R&% . Hence, the maximization in (3.2.19) may be

achieved by differentiation. We obtain

* ' '
g = - (Ryglyy * R E®)

= 'RJMT'E(i‘) ; (3.2.20)

Substituting this expression into (3.2.14) and (3.2.19) yields

1

* =u - ] -1 Y ] .
5 = mQyTn g + QuplQ Ry Ty + Qg Ty JER)

-1 ' -1 [} t
= QT+ QL I-Qp Ry Ty - QR TS IEC)

-1 '
= -Q; T lx - E@)] - R T E(x) (3.2.21)

R T L N g e g
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S o sas T ol T LA T o i L i i O - .

E
|
|
|

and
-5
<wvics Fd ,e> = - 3 E(§ T JJ N E(g YR =R==Rs T'E(x)
} (3.2.22)
[' 1 = = =
7 or, since x = E(EI[EI) S E(EI) 0
% i i
% 43 = Ry E Q) (3.2.23)
a* = Ly’ -1 E SR E(xm) (3.2.24)
47 = -QpTyysp - Qg Tyl - EG) i B g

1 ) -1 '
10870385 = - oy 0 T4 0 LB B e P e

%trace{# QT E )+ Tp R R JJRJMTIME(§ )E(g—)} (3.2.25)

Finally, (3.2.23), (3.2.24), and (3.2.25) may be put in the form

of the theorem using the identities

] | ] L}
RmTim = RygTis + Ry3Tg

' -1

= Ry(Tgy + RJJRJJ IJ) R;g(T IJ Q3 °3'TIJ)
(3.2.26)
3 _’ = —— L= _’
: R Ty RJJTIJ ASNESR,
! -1 '
: Ry3(Tqg + RyjRyyTpy) = Ry Ty - QjJQJJ 1)
; (3.2.27)
R [T I¢ Ol 3.2.28
a1 = Gty Grzze)
R = (Q—-0= Q7 q.~)"" 3.2.29
73 - Q37 RRRANRAA] ’ (3.2.29)

QED.

The decision problem that the theorem solves is illustrated in
Fig. 3.7. It is interesting to observe that a form of the certainty

equivalence principle continucs to apply. If s werc known exactly,
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the optimum setting for gj would be

d% = R~ T's . (3.2.30)

If we replace s by its prior expectation L9=E(3f)] , we get

95 = R ThEGS) | (3.2.31)

which by (3.2.23) is the optimal setting under uncertainty.

Given this
setting for gj » the optimal setting for QJ given s would be

* -1 -1 '
€37 Ut + QT EGy) - Ry THECE) Qe

Replacing s

with its posterior expectation Lgf”gf] » we obtain
Eq. (3.2.24),

45 = Q)T - - Q3% Loy EGep) T - R InE ) (3.2.33)

the optimal setting for QJ c

COROLLARY 1: Under the structure Cs.Fd

g
=0, (3.2.34)
a* = -0 l1! & (3.2.35)
J JI'NF ° i
v le> = - Strace{T Q711" 2(xx') (3.2.36)
'CSIFdJ 2 NJ*JJ NJn Tt

if any of the following conditions hold:
(a) E(x5) =0

(b) J=¢ (Complete flexibility)
(c) IT=¢ (Complete information)

PROOF: For condition (a) the proof follows trivially from (3807573

(3.2.24), and (3.2.25). That the reduction results for conditions

(b) and (c) is easily deduced by reviewing the proof for the above
theorem under each condition. QED,
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COROLLARY 2: Under the structure CsIFdJ

&HS=0, (3.2.37)
a* = -0 ! s (3.2.38)
=J JIIFI
N le> = - ltrace % Q-lT' E(s s')} (3.2.39)
Cs Fd, 2 V1373313 [

if any of the following conditions hold:
() g =0

(b) T.EM = [0]

(c) E(EI) =0 and TTJ = [0]

PROOF: The proof follows by direct substitution into (3.2.23), (3.2.24),
and (3.2.25). QED.

ADDITIVITY CHARACTERISTICS OF THE EVPIGPF

For the following two corollaries we shall assume in addition that
the conditional expectation of s 1is a linear function of the observ-
able state variables. Condition (a) of Corollary 1 holds in this case;
we may generalize two of the results obtained in the four-variable

quadratic example of Section 3.1.

COROLLARY 3: Suppose the random variables composing the vector S
upon which clairvoyance is available may be partitioned into two 3

vectors 11 and 519 that are independent. Then

<Y

|e> = <«v &>+
CsIFdJ Cs FdJ

FdJ|E> . (3.2.40)

Il Cs19

PROOF: By assumption, x = E(s|s;) = Ds; for some matrix D . Denot- a
ing the covariance matrix of s. by C I (3.2.36) becomes

I I

-1

4 '
<vCSIFdJ|e> - 2trace{é TNJQJJTNJDCII} : (3.2.41)

For convenience in what follows we shall assume that the variables

RS .o
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|
3

have been ordered so that

3 —I].
E 5= |5 . (3.2.42)
| Lo
E The independence of 311 and 519 imply
E C 0
f c_ = | N , (3.2.43)
1T .
0 i
- 1212
IO
D= {0 I , (3.2.44)
iy | 5

where I and 0 are identity and zero matrices. Similarly, with

1 2
Blslep)) = o )31:1 el ) - n' )512

I 0
L= O R R ] (3.2.45)
i %2
Finally, defining I = TNJQ-IT' with appropriately partitioned

JJINJ
submatrices H,. :
1]

Voo pg 16> = - Ttrace(D'IDC, ) ?
J

Cs. F 2

I II

1
= - Etrace
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i L0 P P " e R ) Sl e i O e L
Rt Ol o L B P L PR e pm— - ——

[}
1 [**11““13D 1D (Hgy+H44Dy) ] Crin1 °

- . —ztrace .
[ﬁ22+H23D2+D2(H

9’
32*H3305) }:1212
(3.2.46)

-l (D' (1) }
uVCslleJ|€> - 2trace{D HD*™Crirg

1 '
= - —ztrace{ H11+H13D1+D1(H31+H33D1) }1111} » (3.2.47)

| S (2)' (2) }
<"Cs Fd |8> & 2trace{D HD CIZIZ

I2°°J

1 '
= . Etrace{[ﬂ22+H23D2+D2(H32+H33D2)]CIZIZ} . (3.2.48)

(3.2.40) follows from a comparison of (3.2.46), (3.2.47), and
(3.2.48). QED.

Following the example of Section 3.1, we say that decision vectors

ng and ng do not interact if the value function may be expressed as

vidy)adypady) = vi(sids)ady) + vy(aidgyady) (L)

COROLLARY 4: Suppose the decision variables composing the decision
vector gJ for which flexibility is available may be partitioned

into two vectors ng and ng that do not interact. Then

<V > = <y o>+ le> . (3.2.50)
CsIFdJ - CsIFdJl CSIFdJZ

PROOF: For convenience we assume decision variables are ordered so
that

d=|dj, ] (3.2.51)
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For the quadratic value function, the non-interaction assumption

means that the matrix QJJ has the diagonal form

Q;; = : (3.2.52)

Then using (3.2.41),

1 i -1 T, . |DC }
Ves Fa 1F> " - 2”ace{D o oz )| G © o

I 1
-1 T
L QJ2J2 92

-1 ' c..)

1 L
= - ptrace(D'Ty Q5 51Ty 51 PCr g

5 Q

NJ1

.l ' pe.)

1 1
- ptrace(D Ty Q.5 19Ty 52 C011

2 NJ2

-y o>+ v le> . (3.2.53)
CSIFdJl CsIFdJ2

QED.
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CHAPTER 4
QUANTIZED INFORMATION AND DISCRETIZED DECISION SYSTEMS

In Section 2.3 the topic of evaluating imperfact information given
partial flexibility was discussed. That discussion might have led the
reader to presume that a decision maker would never prefer to use im-
perfect information or partial rather than complete flexibility in his
decision model. Quite to the contrary, perfect information will typi-
cally be evaluated as if it were imperfect quantized information, and
complete flexibility will usually be treated as if it were only partial
discretized flexibility.

The reason for this is that quantization of information and dis-
cretization of decisions can provide the simplification necessary to
reduce a complex decision problem to a computationally manageable
size. The application of this principle is so common that it is likely
to be taken for granted. Information is usually expressed numerically
or otherwise categorized and, therefore, by necessity it is "rounded
off." Similarly, our decisions are frequently constrained to be some
multiple of a common number or unit: dozens, cases, minutes, etc.
Quantization allows us to reduce an infinite number of possibilities to
a finite number with which we find it easier to deal.

By the same principle, if the decision analyst treats his contin-
uous or many-valued state variables as if they were roughly quantized,
and his continuous or many-valued decision variables as if they were
crudely discretized, he can frequently achieve an enormous simplifica-
tion in his decision model. For this reason, information and flexibil-
ity will typically be accounted for by artificially quantizing state
variables and artificially discretizing decision variables in a very
rough manner.

The purpose of this chapter will be to investigate the consequences
of introducing quantization into a decision model. The first sections
address the issue of quantizing continuous valued state variables; the
latter section, discretizing continuous decision variables. Our objec~

tive here is by no means meant to be a thorough investigation of
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quantization in decision analysis. Rather, we address the problem more
as a necessary side issue of our study of the value of information-

flexibility structures.

4.1 STATE VARIABLE QUANTIZATION

We begin by considering once again the basic decision model of
Fig. 1.4. 1If the value of the state vector s was anticipated to be-
come kiown to the decision maker prior to his setting of the decision
vector d , the utility of the decision problem (before s 1is revealed)
and the optimum decision strategy are found by solving the functional

optimization problem

<ulg> = 1‘ max <uls,d,e> (s|e} . (4.1.1)
seS deD

Solution of (4.1.1) yields an optimal decision function d*(-.) which
maps the state space S into some subset of the action set D . Cal-
culation of such a decision function is necessary in problems for which
optimization after the receipt of information is impractical or in prob-
lems for which the setting of the decision vector d conditional upon
s is part of the evaluation of a larger decision strategy.

For several reasons, however, the functional optimization indi-
cated in (4.1.1) is rarely performed in practice. In many cases be-
cause of accounting problems, the precise value of s will not be
reported to the decision maker. Rather its value will be rounded off
to a more convenient number. In other situations the functional opti-
mization required in (4.l1.1) may be too difficult to perform; it
will be far simpler to execute the optimization in a decision tree in
which the distribution of s has been approximated by a probability
mass function. Thus, we often find that practical matters lead us to
quantize a random variable,

State variable quantization in decision models is usually accom-
plished by artificially concentrating the continuously distributed
state variable probability mass on certain discrete points chosen
within the state space S . This, however, causes some problems. Af-

ter the decision strategy has been formulated and it comes time for the
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UTILITY OF
OUTCOME

<ulsd,£>

INFORMATION DECISION
SYSTEM REPORTS MAKER SETS
H d

(s} COMPLETE MODEL

UTILITY OF
OUTCOME

<ulsd,€>

INFORMATION DECISION ACTUAL VALUE
SYSTEM REPORTS MAKER SETS OF s WITHIN Sl

gSI d

(bl SIMPLIFIEC' MODEL

FIGURE 4.1 COMPLETE DECISION MODEL AND SIMPLIFICATION
RESULTING FROM QUANTIZATION
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decision maker to set d according to an optimal decision strategy
d*(+) , the observed value of 5 may not even correspond to any of the
discrete ievels for which the decision rule was calculated. In
such situations, the decision maker is likely to use the optimal deci-
sion setting corresponding to the "closest" quantized level. We forma-
lize this last thought by imagining that a partition PS = {Si}ifl has
been formed on the set S of possible states of Nature. The action of
the quantized information system is such that if s ¢ Si , the index i
is communicated and made available for the decision process. Correspond-
ing to each subset Si the decision maker must find the decision set-
ting d*(i) that maximizes the expected utility given only that s €5,
The complete decision model and the simplification achieved through
quantization are illustrated in Fig. &4.1. Notice that not only has the
information system been simplified, but specification of the optimal
decision strategy requires only the specification of the N vectors

d%(1),...,d*(N) , not the specification of a vector of functions d*(-)

on S . Specifically, if s ¢ Si the optimal decision setting maximizes

the conditional expectation

<uls ¢8.,d.,e>= | als,d,8> s|s ¢5,,8}, i=l,...,N, (4.1.2)
1 1 &, =y f= = 1
Sgs.
- 1
where
{sley
{sls e5,,€} " T o5 sy £ C S, (4.1.3)

1s the conditional distribution of s given that s lies in subset

S. and
1

e es;lel= [ sfe) (4.1.4)

seS.

p N
1s the probability that s lies in Si . Hence, to the partition P
and given model {S,D,{§

6},v,u}- will correspond an expected utility

N N
N o
<u'Ps,8> = 2 {s eSi|6‘] <uls €5,,6> = Z max r <l|s,d,e> {sle}.
L 3 . deD SeSi
i=] iml

(4.1.5)
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EVALUATING A QUANTIZING SCHEME

Suppose that quancized information may be purchased at a price
p; - If -ule> is the expected utility given no information on s ,
and <u|P§,p1,€> is the expected utility given that the quantized in-
formatioﬂ—system is purchased at a price p; , we define the price p;

such that

<u PI:,pl,‘_'\ - <ules (4.1.6)
L N 4 |
to be the value of the partition P and denote this value by L(PS) :
Similarly, suppose that complete (exact) information could be purchased
at a price Py » and let fuiQ§,p2,P> denote the maximum expected util-

ity if this purchase is made. We define the price pjp such that

<ulCs,py,P> = mlP’:,n> (4.1.7)

as the loss associated with using the particular quantization scheme
PS . We denote this quantity by E(Pg) . U(PS) may be interpreted as
the maximum amount of money the decision maker would be willing to pay
for the use of the quantized information system. We interpret E(PE)
as the economic loss a decision maker with a complete information é;s-
tem would have to sustain to make him indifferent between retaining it
(the complete information system) and accepting instead the quantized
system.

The number of subsets N comprising the partition PS determines
the level of quantization. Several possible levels of quantization are
illustrated in Fig. 4.2. Notice that for N = 1 we have the situation
of Fig. 2.1, and the loss of the quantized system is just the value of
perfect information on s given perfect flexibility on d . As N
goes to infinity the quantized system approaches the complete model in
which information and flexibility are available. Thus, the decision
models with and without flexibilitv can be thought of as the two ex-
tremes of a collection of models which piece-wise approximate the op-
timal decision strategy over the state space.

Because calculation of the optimal strategy for the quantized

model is, in principle, easier than that for the complete model, two
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FIGURE 4.2 DECISION PROBLEMS FOR VARIOUS LEVELS OF QUANTIZATION N



important questions emerge: First, what is the value of a particular
level of quantization? Second, given that the level N of quantiza-
tion is fixed, how should the partition P\ = {51} 121
Equations (4.1.5), (4.1.6), and (4.1.7) move us an important step to-

be determined?

wards answering these questions. We can compare the relative advantage
of using various quantizing schemes by comparing their expected utili-
ties and associated values and losses. Fixing N , we can choose the
quantizing partition Pg = {Si} ifl S0 as to maximize this advantage.
We apply these ideas to the entrepreneur's price and quantity decision

in the example below.

4.2 QUANTIZING THE COST VARIABLE 1IN THE ENTREPRENEUR'S DECISION

Suppose for the entrepreneur's problem of Section 2.2 that infor-

mation is available on the cost variable ¢ . The decision maker must
choose between using the complete model and the N-partition model of
Fig. 4.3. We wish to determine the economic loss to be expected from
using various levels of quantization, and we wish to design the quantiz-

ing partitions in such a way so as to minimize this loss.

TWO-LEVEL QUANTIZATION

The possible values for per unit production costs ¢ are parti-
tioned into two sets by the point y; . If 0 - c ~ ¥1s costs are
"low" and an appropriate price p and quantity q are to be deter-
mined. If y;, <c - 1, a price and quantity are chosen that are ap-
propriate for "high" costs. The expected payoff using such a strategy

is given by
Y1 1

~n

<v|PN,€> = max max f <vlp,q,c,e,f= felrlicle}
e cg e,
1. 51 § &

+ max max : <vip,q,c,e,f- fele}fclel
Py 9 91 0

2 y 2
b2 1
= max max{yl[aiba-(bt : + -2)p- 2 +(a- -fl)q-qu- 'P‘g"] }

2p
b 9 .
1+ 2
b2 1 al Y1
+ :ax :ax{?l—yl)[a+ba-(h+ = + E)p- EE +(a- 3 )q-pbg- 2g—]},
2 2

(4.2.1)
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Differentiating to perform the maximizations we obtain the decision

rule

i 3
; _ 2a-y1-2pb p* ‘\/ 4ay1-y1
. 1

*
£5 1 7D : WA (4.2.2)
d 2
2a-(1+yl)-2pb 4a(1+y1)-(1+y1)
q% = - , p,* = - (4.2.3)
._p 2 Jb"'ll-
and a corresponding maximal expected payoff of
o) b V2btl T /2 3/2 1/2
VIP(r,8o = a + 3 - R ((aany ) 0y e 1-y ) oy |
(6.2.4)

Notice that for vy, = 0 or vy = 1, Eqs. (4.2.2), (&4.2.3), and
(4.2.4) reduce to Eqs. (B.4) and (B.5) of Appendix B. This makes sense
when we interpret the latter equations as corresponding to a one-
partition quantization of costs,

If the organizer sets y, = 1/2 , the state space is partitioned
in balf and the maximum amount of information is conveyed by the quan-
tized information system. In this case, plugging vy = <20 5. ragE=2RD5H

and b = .5 into (4.2.4) gives

’VlP§,8>* $585,277 , (4.2.5)

which is $85,139 better than if no information on costs is provided,
and $54,139 short of the value produced with the complete informatior
system. However, from (4.2.4) we see that the best two-state informa-

tion system is obtained by choosing y1 SO as to minimize

(46')’1)1/2 }’5/2 + (4a- 1—y1)1/2(1+}'1)1/2( 1"}'1)
i ] (9'y19j2ys/2+(8-y1)ha(1+y1fj2(1-y1) . (4.2.6)

The value of Y1 that minimizes this expression is approximately

yy = 0.35165 . (4.2.7)

ST




Thus, the best two-level quantizing scheme for a strategy contingent
only on the information '"costs are high" or "costs are low" would be
achieved by defining costs as "high" or "low" according to whether or
not they exceed $351.65 per unit. Plugging (4.2.7) into (4.2.4) we

obtain the maximum expected payoff if a two-partition information sys-

tem is used for costs:
2
<v|p ,e> = $592,328 . (4.2.8)

N-LEVEL QUANTIZATION
Define Yo ® 0 and "~ 1 and assume that the information sys-
tem quantizes the cost variable ¢ into N intervals the ith of which

is bounded by the points Yi1 and y; If the information system

reports only the interval into which costs fall, the expected payoff
will be

N

(L o
e

N < yi 1
<v|Pc(y1,...,yN_1),6>»- ' max max J eJ'<V|p,q,c,e,8>{e|?}{c|8}.
0

(4.2.9)

Differentiating as in the two-level case we obtain expressions for the

optimal prices and quantities and the corresponding expected payoff.

o _\/ RO ) Oy x 2o Oyytygy)
i

8bts s qi 26? - b, (4.2.10)

N
<N|Pc(y1,...,yN_1),8>

= a+

[Gamyy -y 20ty P00y, p ]

N
bVl T
2 2 £

im]
(4.2.11)

Due to the assumed linearity of the decision maker's utility function,

the economic loss from using such a quantizing scheme is
£y = wiCe,Bs - V|P(y ...y .8 (4.2.12)
3 c ~ H c 1’-"’ N-j. ’ a . .

7
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Table 4.1 consists of numerical evaluations of (4.2.10) and (4.2.12).
The calculations were made with a = 2,25, b = .5 for equal interval
partitions and for the optimal quantizing partitions for several lev-
els of quantization N . Figure 4. shows a plot of quantizing loss
versus the number of quantizing levels N for the two quantizing

-2
schemes. Notice that quantizing loss falls roughly as N = .

4.3 QUANTIZATION IN THE TWO- VARIABLE QUADRATIC PROBLEM

In this section we shall explore the effects of information quan-
tization on a two-variable quadratic decision problem of the form in-
troduced in Chapter 3. For such decision problems we are able to
determine necessary conditions that an optimal quantizing partition
must satisfy and to evaluate the effects on quantizing loss of using
various levels of quantization and various suboptimal quantizing
schemes. The results are of interest because, as stated in Chapter 3,
the quadratic function is frequently a good approximation to a complex
value function.

Consider the simplest quadratic decision problem in which there is
a single state variable s and a single decision variable d . We
assume that the decision space D is the real line R and the state
space S5 1is a segment of R . The value function is assumed quadratic
in s and d and for every s to attain a unique maxXimum with re-
spect to d . Then, according to the argument of Section 3.2, by
suitably defining origins there is no loss in generality in assuming

2

v(s,d) = tsd +-é qd (4.3.1)

with E(s) = 0 , Var(s) = c2 ,and q - 0 .

Our decision maker is assumed to be risk indifferent so that
basing his decisions on expected payoff is equivalent to the criteria
of expected utility. We suppose that, for the aid of the decision
maker, a quantized information system has been instituted which in-
duces a partition PS -'{Si} izl on the region S . The maximum ex-

pected payoff which can be attained using this information system is
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TABLE 4.1

Loss and Decision Strategy for Various Quantized Information

Systems for Costs in the Entrepreneur's Decision

JUANTIZING
LEVEL N

QUARTIZING
SCHEWE &
FARTITION
BCURDARIES

DFECISION RULY
price in thousands of
dollars = guantity in

thousands of units

JUANTIZING
LCSS

£(F})

p*=1.000

q.

=1.250

$139,416

Equal
Interval

« 5000

p

il

i
a1

e 0728

2.2453

p5=1.186

qé—' -7’05

954,139

Optimal
«3517

pi * 0617

qi“aoebq’

pé=1|157

q"}: 0835

447,088

Faual
Interval

<5335
60667

p3=1.000
q3-1.250

I)3=1.256

Q5_ .6‘+6

$30,722

Optimal

. 1783
5207

p::)= .852
q3=1.732

p;=l- 192

93" « 49

823,739

Erual
Intervzl
2500

« 5000
«7500

420,482

Optimal

314,367

Equal
Interval

« 2000
« 4000
« 6000
« 8000

$14,942
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<N|PN,8\ = Eq{max E[v(s,d)]ss:SJ}
S i di 1

N
2]

e (4.3.2)

I’ y 1
= }_ Pi m:'ix[tdi h\s]sesi)i- 3 qd

i=m] di

where P, is the probability that s falls in Si and

by
Zpi=1.

i=]

Differentiating in order to find rhe maximizing di , we obtain the
decision variable setting the decision maker ought to use if he learns

that s falls in Si g

d?---{g’E(slse 5.0, 1= 1,...,N . (4.3.3)

Substituting this into (4.3.2),

N
2 2
<le§,E> - - éa S’ PiE(slSG Si) X (4.3.4)

im}

Defining Vi as the conditional variance of s given that s falls

in S, ,
i
V, = E(szlsc S.) - E(s|se s )2 (4.3.5)
i . i i ? T
we have
x 2 5
VPG> = - oo ) PLIE(s |se s,)- v,]
i=]
2 20 3T
= - 55 O (1-—2 IRAE (4.3.6)
[e] .
i=1
From (3.2.39) we see that the term in front of the expression in the 4

parentheses is just the value of clairvoyance on s:
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2
U'(Cs) = - 12:-(-:1- g (4.3.7)

Finally, since the expected payoff given no information on s is zero,

the value of the quantizing system equals the expected payoff:

v(pg) = U(Cs)(1-L)) (4.3.8)
where
N
1 =
L, =—3 2%%. (4.3.9)
g .
i=1

In view of the above, we see that choosing the quantizing system

so as to maximize expected payoff is equivalent to solving the extremal

problem defined by

N
inf PV, . (4.3.10)
N 11
U S.=5 iml
1
i=l

Equivalent forms of problem (4.3.10) have appeared in several papers

dealing with grouping problems with different objectives of the group-
ing [2,3,4].

OPTIMAL QUANTIZING PARTITION
It is a simple matter to derive the optimal quantizing partition

if we return to Eq. (4.3.4). From {4.3.10) it should be intuitively

clear (and it is easy to prove) that the optimal partition consists of

a breakdown of the space S into connected intervals. Therefore, let j
the regions Si be the segments (yi-l’yi) with Yo <Y1 S+-- Yy »
where y, and Yy @are respectively the (possibly infinite) initial
and fin.. points of the region S . Then “f f(s) = {s|€} is the

density function describing the distribution of s

o oo ta o LA el

2 N a2
PSS oy et (4.3.11)
<V| s’ > 2q P]'_ ’ 5 &
iml

where




’Iy i

A, = s f(s)ds . (4.3.12)
y.=-1
i
If we wish to maximize (4.3.11) for fixed N , we get necessary condi-
tions by differentiating with respect to the y; and setting deriva-

tives equal to zero. The terms of the sum involving y; are

2 2
AL AL
P—l 5o (4.3.13)
#1 By
Differertiating,
I 2 . 2 .
> . ] : A
3 i Ai+l'\ el Jonp ot B SRR i P
LR SERR I T T p2 Ay
i i+1

A A

i A4 I ]

- f(yi)é = )[2yi . é - 5 \]- 0 .(4.3.14)
i i+l i i+l -

Noting that

i
?; = <s[yi_1 5 < yi,€> s (4.3.15)

then, since f 1is nonzero oa S and the optimal partition consists of

contiguous intervals, {4.3.14) implies that

1 : 7 I ;
' C 2(-,s|yi_1 2S5 % yi,€>>+ “8ly; <8 < yi+1,€.) . (4.3.16)
Thus for the two-variable quadratic decision problem, the optimal par-
tition is independent of the parameters of the value function and is
such that partition boundaries are located half-way between the condi-
tional means of the neighboring partitions.

If ¥ is unimodal the solution to (4.3.16) will be unique.

Otherwise, all the critical points must be calculated in order to iden-

tify the partition that maximizes (4.3.11). Except for tvivial

distributions, solutions to (4.3.16) will have to be determined using

some sort of iterative technique. Table 4.2 gives the optimal partition
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boundaries for the normalized uniform, exponential and normal distribu-
tions. The normal results were obtained in another context by Cox [3].
Data for the other distributions were calculated from the results of

the following two examples.

Example: Uniform Distribution

Suppose that s is uniformly distributed. Then

Slyjq €8 <yl —— (4.3.17)

Substituting into (4.3.16) and solving for Y;» e get

Y. + vy,
v =._£_£7?_&il ) (4.3.18)

Thorefore, the optimal partition tor the uniform distribution is ob-

tained by equally spacing the Yi

Example: Exponential Distribution

For the exponential distribution

f(s) =e°, s3>0, (4.3.19)
we have
i
-5
r s ¢ ds -yi -yi-1
Y. S S
N | i-1 i i-1
‘s yi-l Sk yi,E/ = = ] 4 = =
i Il
) e ° ds €
Yil1 (4.3.20)

Substituting into (4.3.16),
Vi JYi-1 YL TYE
1 Zig . Sl 4 Yitl 41

y. =212 4+~
i 2 -y. -y. -y, SIy
A o i-1 . -1+1_ " i

(4.3.21)

With a little algebra this may be expressed as
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Yit Yia )

. [1 i e'(yi'yi-l
2 X
Consider first i = N-1 and observe that W<~ Then, (4.3.22)

becomes

yN_l- y_N;Z e [1 - e-(yN_I_yN_z)

> (4.3.23)
Plugging i = N-2 into (4.3.22) and using (4.3.23),
A YN
YN-2" YN-3 S IPREY) R R a2
R LR B
- YN-27YN-1
l-e
'(%bfyw3)1yw1'yw2
. [1 - e | s (4.3.26)

Using (4.3.22), (4.3.23), and (4.3.24) wo can calculate the optimal Yi

for various values of N . For cxample, if N = 3 |, (4.3.23) becomes

VL [1 ] e-(yz-yl)]
2 b

which has the solntion Yo - ¥ = 1.5936 . Then using (4.3.24) and the

fact that TG () &

which yields y; = 1.0176 , Yo = 2.6112 .

DEPENDENCE OF QUANTIZING LOSS ON QUANTIZATION SCHEME
From (4.3.8) and the assumed linearity of our decision maker's

utility function, the quantizing loss associated with the partition
N N R
PS ={Si}i-1 is given by

s»(Pl:) = U(Cs) - L, (4.3.27)

The quantity L1 defined by (4.3.9; is a convenient measure of the

losses introduced into the problem due to quantization. It is of
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interest to ascertain the effect of the number of levels N and of
departure: from th: optimal partitions on quantizing loss. Consider

the case of a uniformly distributed s . Using (4.3.18) in (4.3.9)

N N 2
L ._1 X P.V. ._1. V _1 3 i.L (‘4:3.28)
1 AL TS T 2 L N 2 2
o, o . N N
im} im]l

We should expect approximately this sort of dependence in general. In
fact if N 1is relatively large the probability density does not vary
much from one end of a partition to the other and is well approximated
by a density function whose magnitude over each partition is a constant
equal to the mean of its values at the partition end points. If this
is the case, the best way of partitioning to a level 2N 1is to divide
cach partition in half; it is easy to see that this will result in

a value of L, for 2N partitions, which is 1/4 the value for N
partitions.

In Table 4.3 values of I..1 are given for the three distributions
under their respective optimal partitions and under equiprobable parti-
tions. Notice that,although the optimal partitions for the exponential
and normal distributions differ considerably from equiprobable parti-

tions, the latter perform well, indicating that the function L1 is
quite flat in the neighborhood of its minimum. This is a fortunate re-
sult as it implies that the optimal quantizing partition need not be
specified too precisely. A plot of the minimum L1 versus N appears
in Fig. 4.5. Notice that L1 decreases rapidly up to about N = 3 .
Beyond three quantizing levels a unit increase in N causes a relatively
small decrease in L1 - This tells us that most of the value of infor-

mation can be obtained by using rough quantization to as few as three
levels.

A GRAPHICAL TECHNIQUE FOR DETERMINING THE OPTIMAL QUANTIZING PARTITION
We discuss here a graphical method for obtaining the optimal quan-
tizing partition for the two-variable quadratic problem given an arbi-
trary prior distribution f .
At the heart of our method lies a technique for quickly and

accurately approximating the mean » of a real valued continuous
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random variable x . We suppose that x is described by a cumulative
distribution function G and corresponding probability density func-

tion g which is zero outside some (poscible infinite) range (a,b)

] Then

= b 0

2e il et it ] ey & (4.3.29)
0" a’
Substituting
‘)c 0

X = do = - da (4.3.30)

0 X5

we can replace the single integrals by double integrals,

_ b x 0O 0
R o= r | g(x) dudx - [ f g(x) dodx . (4.3.31)
0 O a“* ¥

Reversing the order of integration,

N b 15 0 o
v o= { r g(x) dxd~ - ‘ g(x) dxdz
oY ali i
b 0
- [1-6(x)] de- [ 6(0) do . (4.3.32)
0 a’”

Equation (4.3.32) states that the mean is equal to the area lying be-
tween the cumulative distribution function and unity in the range
(0,b) 1less the area under the cumulative distribution function in the
range (a,0) . If we now translate the axis to the right a distance
d --that is, we define a random variable x' = x-d --and choose d so
that the difference between the areas is zero, we must have ;'-‘2 - d
=0 ,or d=x. This shows that the mean of any real valued con-
tinuous random variable x 1is that point on the x axis for which a
vertical line through the point is such that the areca to the left under
the cumulative distribution function is equal to the area to the right
that is between the cumulative distribution function and unity.
Return now to the problem of approximating the optimal quantizing

partition. Working on a plot of the cumulative distribution function,
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we begin by guessing a value for Yy o The conditional mean of the
region partitioned by (yO’yl) , which we denote in Fig. 4.6 by X] o
is now estimated using our graphical technique. When 3 is properly
positioned at the conditional mean, the areas of the shaded regions

Ry and Ri will Le equal.
Next, a distance Yy - ¥ is marked off to the right of the

point 'y, , and the resulting point is called x If Yy is placed

2
so as to satisfy (4.3.16), x, will be the conditional mean of the
region (yl.yo), and we can use the fact that the areas R2 and Ré
must be equal to aid us in placing Yy o Continuing with this method,

all the boundary point< through may be placed. Finally, if Yy

YN-1

was chosen correctly, then the point will be at the conditional

N-1
mean of the iregion (yN-l’yN) o L %1 Ls too far to the left
[right], then the process must be repcated using a larger [smaller]

value for Y1

4.4 DECISION VARTABLE DISCRETIZATION

Just as practical matters often lead to a quantization of the
state space, they may also require us to restrict the feasible deci-
sion set to a class representable by a finite set of pirameters.

Again the reasons for this are primarily technical. Numerical expres-
sion of an optimal decision strategy inherently results in discretiza-
tion. Also, the optimization can frequently be greatly simplified if
it is performed in a decision tree which limits the possible decision
set:ings to some small finite number. 1In fact, use of a digital com-
puter by its very nature requires discretization of all continuous
variables.

We are led, therefore, to the problem of choosing the class of
alternatives to which our solution shall be restricted. As with state
variable quantization, the key point to bear in mind is that the reduc-

tion in complexity to be obtained through rough discretization of the

feasible decision space is obtained at a price of a reduction in per-
formance. Let us pursue this topic by once again considering the two-

state quadratic problem. ]
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4.5 DISCRETIZATION IN THE TWQ VARIABLE QUADRATIC PROBLEM

E We assume that our decision maker is faced with the two-variable
| quadratic decision problem described in Section 4.3. liis state of in-
formation is 8 . We wish to know what economic loss will result if
the decision maker uses the simplified model of Fig. 4.7 in which the
infinite decision space D of the complete model is replaced by the
] )
set of points {dl""’de
Let d* denote the optimal decision setting for the complete
I P (R (| . h ; T
model and let D, w od, . be the discretization of the decision
d 11f1=1
space. Any discretization which contains d%* will, of course, result

in zero loss. However, we presume that at this roint in the modelling

process d* is not precisely known. Let Y(Dg) denote the expected

loss in payoff corresponding to the discretization Dg . Then, by ex-
pansion, :
M b o ; =
M — [Probability d; is Expected loss if dg
S(Dd) = V) |chosen optimal by X | is chosen optimal oL@ 5. 1)
i:l implified model  _ by simplified model

In the present case, the maximum expected payoff

I 5 2
max v|d,g>=- < = E(s |8) €4.5.2)
d 29

COMPLETE MODEL SIMPLIFIED MODEL

s

<vld.,8>

DECISION DECISION DECISION DECISION
MAKER'S MAKER SETS MAKER'S MAKER SETS
STATE OF deD = R STATE OF dc{d',..,dM

INFORMATION INFORMATION

BECOMES 3 BECOMES 8

FIGURE 4.7 COMPLETE DECISION MODEL AND SIMPLIFICATION RESULTING
FROM DISCRETIZATION
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is achieved with

i ﬁ E(s|8) . (4.5.3)

Defining d' = d - d* as the deviation from the optimal decision set-

ting,
1 t2 2 1 2
<v|d=d'+d*,8> = - 3 = EGs19)7 45 qd'" . (4.5.4)

Thus, the expected loss in payof  if the decision variable is set to

Jd, is
1

1 2
~v|d¥,8> - wddi,S» AR q(di - d¥)” (4.5.5)

Now let us explore the behavior of the simplified model. 1If
{di}.ifl is the existing discretization, which setting di will the
simplified model choose as optimal? Suppose again that d* is the
optimal decision in the complete model. We will determine the value

of d* , say LI for which the simplified model is indifferent be-

tween alternatives di and di+1 Setting
<v|di,S> = <v|di+1,gu e (4.5.6)
or using (4.5.5),
1 2 1 2
- - - % B - - - k
5> 9(d;- d¥%) > q(di+1 3 (4.5.7)
we ottain
d,+ d
- | i+l
d* X R | £ (4.5.8)

Thus, tte simplified quadratic model :hooses the discretized decision
setting that lies nearest the true optimal value.

We may now write mathematical expressions for each term on the
right-hand side of (4.5.1). We assume that the decision analyst has i
through some means derived a prior distribution {d*|8} on the opti-

mal decision setting d* for the complete modei. Then the a priori
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probability that decision di will be chosen optimal by the simpli-

ficd model is

d.+d.
i i+l
2
P, = l fa%|g) , i=1,...,M, (4.5.9)
d +d
i-1 i
2
and the expected loss given that o, 1S chosen optimal is
i+
8 ehi
q 2 2
;p [ (dy - d%)” {d*|8} , i =1,...,M, (4.5.10)
T d, el
i 0
2

'he re : o dofined s = 1 2
where dO and dM+1 are defined such that (d0+d1)/2 ar 5 (QM+dm+1)/b
=45 and (a,b) is the range over which {d*‘S’ is defined. Using

the above, (4.5.1) becomes

M ith
S(DS) ®23 ) { (d;- ax)? {axs} . (6.5.11)
© = d ohd
i=;1 i-1 74§

A SPECIAL CASE

: . M
Before turning to the question of how the discretization {di}

i=ml
should be chosen, we shall present a special case that appears to be
an analog to the quantization problem of Section 4.3. Suppose that the
uncertainty in d* arises because the particular value that s ob-
tains is not yet known. This would be the case, for example, if the

discretized model were being designed to be used repeatedly for a number

of independent trials. Then, since for the complete model

E LY (4.5.12)
q
if 8=¢ and {s|el = f(s) ,
rax|g) .-‘tl f(- -2 a*) . (4.5.13)
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In this case, (4.5.11) becomes

] di+di+l
g 8 2
g =L Y | (0,-d%)% 1(- 3 a%) aax . (4.5.14)
d 2t L ‘ i t
. d, .+d:
il g 4
; 2
F Defining the change of variable s* = - gd*/t and letting £, " -qdi/t s
L this may be written
1541
M ———
M L2 2
£Oy) = - 5 [ (s.-s%) f(s%) dsw . (4.5.15)
Sl 3 :
i=] i-1""j

From (3.2.39) we recognize that the term in front of the summation is

the value of flexibility on d divided by the variance of s ,

N

b ) 2
V(Fd) T G (4.5.16)
Hence,
i
M -
£(Dy) = V(FY) - L, , (4.5.17)
where
L ‘ i T
L 2
L, '—; ) [ (s.-s%)7 f(s) ds . (4.5.18)
g oL s, 48’ &
iml "i-1""4{
2

OPTIMAL DISCRETIZATION

In view of (4.5.11), we will have an optimal discretization of the

decision space if we choose the d; so as to minimize

e YT
¥ 2
1 = \
L, =— ) [ (d.-d*)2 {d*|3} . (4.5.19)
2 2y T ) i
o d, .+4d:
i=l i-1" 7§
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Differentiating with respect to (i and setting the result to zero,

we obtain a set of necessary conditions for the optimal di:

d +d . G,4d,

di - d*L-L_-_l‘ £ gl S i+l

] =

The coptimal discretization pointe 91 are the conditional means of
partitions whose bounduries are located halfway between the conditional
means of the neighborirg partitions. This is precisely the condition
satisfied by the conditional means of the optimal quantizing intervals
defined by (4.3.16): Therefore, the same procedures used in Section
4.3 for calculating good quantizing intervals may be used to calcu-
late good discretizing schemes. In particular, the graphical tech-
nique is useful. The only difference between the two problems, of
course, is that in the case of state variable quantizing it is the boun-
daries, the ¥ in Fig. 4.6, that arc important; in the case 6f deci-
sion discretization it is the conditional means, the xi , that are
important.

Table 4.4 gives the optimal discretizing points for the normalized
uniform, expeonential, and normal probability distributions. Table 4.5
gives values of L2 for the three distributions under their respective
optimal discretizations and for the equiprobable discretization in
which Prob(di_1 < d* - di) = 1/M for all i , and Prob(d* - dl) =
Prob(d* > dM) ® 1/2M . The entries in the first column are identical
to those of Table 4.3 since in the optimal case the expressions for

L1 and L, each reduce to

-

M XX
25 i
min L, = min L, = — ) ) (x - <x|x L% £ % 8>02 {x]8}
1 2 2 1 ] i-1 I i >
T jel *i-1
(4.5.21)
where
<x|x_= SR <X, 8% Sk, 5% &8
x, = —izl 1 o e e N o

We reach the same qualitative conclusions about the behavior of L2

as we did about L1 - The function has a flat minimum indicating that

optimal discretizations need not be precisely specified. The function
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decreases rapidly with the level M of discretization up to about
M =3, telling us that most of the value of flexibility can be ob-

tained through the use of very rough discretization.

4.6 CONCLUSIONS

Obviously a good deal more work has to be done before we gain a
thorough understanding of the effects of quantization on state vari-

ables and discretization on decision variables, However, our initial

results are quite encouraging as they seem to imply that the common
technique of quantizing state variables is a highly effective method

for evaluating and utilizing information. Similarly, discretizing

decision variables seems to be a very practical method for evaluating
flexibility.




k CHAPTER 5
APPLICATION OF THE FLEXIBILITY CONCEPT TO DECISION
MODEL DESIGN AND ANALYSIS

The flexibility concept and the quadratic results of Chapters 3
ard 4 enable us to expand a useful tecknique for decision model design
and analysis called "proximal analysis." The term proximal analysis
is short for "approximate sensitivity analysis."

In Sections 5.1 and 5.2 a philosophy of model design is presented,
and the usefulness of sensitivity analysis to this process is briefly

discussed. The expansion of proximal analysis to include the concept

of flexibility is the subject of Section 5.3.

5.1 DESIGN OF SIMPLIFIED MODELS

in previous chapters we repeatedly indicated that a decision maker
may wish to use a less than complete decision model because of the high
cost of complete decision analysis. Since there are a large number of
alternative simplifications, or alternative models, the question arises
as to how to choose the simplified model that is most appropriate for a
given resource commitment problem.

In theory, the problem of choosing between competing models can be
solved using the formal decision analysis technique. Such an approach
involves defining a space of decision models, what Smallwood [12] refers
to as the "metamodel," and then choosing from that space the particular
model and corresponding decision strategy that yield the highest ex-
pected utility consistent with the beliefs and preferences of the deci-
sion maker. The problems associated with such a formulation, however,
preclude its practical use.

Instead of using formal analysis, the process of model specifica-
tion is usually approached in a heuristic manner. The basic technique
is to propose a simplified model, using "rules of thumb" based upon ex-
perience, and then to improve that model until it appears to capture
adequately the real system's perceived dynamics.

Therefore, a goud portion of the model design process consists of

what Demski [5, p. 32] refers to as determining the "scanning
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information" that will indicate improvements that should be incorpo-
rated into the model. By testing the current simplified model, the
decision analyst can often generate much of the needed ccanning infor-

mation. One of the most useful test techniques is sensitivity analysis.

5.2 SENSITIVITY ANALYSIS

In sensitivity analtysis the decision analyst tries to determine the
change in the model's selection of alternative actions or expected util-
ity that would result from a given change in the model's assumptions.
Assumptions that produce small changes are apparently relatively insig-
nificant, while assumptions that produce considerable changes are
likely quite significant. Significant assumptions pertaining to model
structure siiould, of course, be carefully investigated.

We shall illustrate the fundamental nature of sersitivity analy-
sis with applications to the simplified analysis of information and

flexibility.

INFORMATION EVALUATION USING SENSITIVITY ANALYSIS

Suppose a businessman is analyzing the possibility of expanding
his product line. In determining the price he will charge for his new
product, he may wonder how important it is for him to consider the wage
settlement in a labor dispute that is currently being negotiated by
one of his competitors. In other words, our businessman is wondering
whether the wages that will be paid by his competitor will be an im-
portant consideration in planning his own pricing strategy.

In general, sensitivity analysis may be used to estimate the
value of explicitly including the outcome of uncertain information
variables into a model. Two basic sensitivity calculations are neces-

sary for the analysis. The first is referred to as open-loop sensitiv-

ity analysis, and it addresses the question of how the value

resulting from a fixed decision setting varies with changes in state
variable settings. To illustrate, consider the basic decision model
of Fig. 1.4. Suppose that the decision vector is set to its optimum,
d% , and that the il state variable s, 1is set to a fixed value §i
Under these conditions, the expected payoff of the resultant lottery

is given by
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<v|§,,d%,e> = f ~vls,d*,e> {s|¢;,€} . (5.2.1)
seS
Ranging §i over some specific set of values indicates how the value
function varies with the value of s, - Howard [8] refers to this as
open- loop sensitivity analysis because the decision is not altered as
the information on the state variable is introduced.

The second calculation is referred to as closed-loop sensitivity

analysis. It addresses the question of how the maximum value of the
value function behaves as a function of state variable settings. 1If
the ith state variable has value §i » the maximum expected value of

the lottery is

A ~ P ~
<v|§,,d*(s.),8> = max | <vl|s,d,e> {sl|s;,e} . (5.2.2)
= i J - -1
deD seS
Varying §i shows how the maximum payoff value varies with the set-
ting of the ith state variable.
Using the open-and closed-loop sensitivities the decision analyst
may estimate the value to the decision maker of knowing the outcome of
s; - Taking the difference between the two quantities we obtain the

value of stochastic compensation:

I(5)) = <v|§;,d%(3,),8> - «ls, ,d%,e> . (5.2.3)

The value of stochastic compensation is the maximum amount that an

expected value decision maker would be willing to pay in an uncertain

environment to fix the it" state variable at §i . Therefore, taking
the expectation of (5.2.3) with respect to the distribution of S§ »
<ile-= [1(sp) (s, le} , (5.2.4)
SU
i

we obtain the maximum amount the decision maker would pay for the reve-

lation of sy before setting his decision vector.

FLEXIBILITY EVALUATION USING SENSITIVITY ANALYSIS

The same ideas are involved in the analysis of whether to include
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a specific decision variable directly in the model. Suppose we wish

to estimate the effect of obtaining flexibility on decision variable

dj . If we calculate the partially closed-loop sensitivity in which
all decision variables but dj are set to nominal or fixed optimal
values (g-dj)* while dj is allowed to vary optimally with s , we

pet

v|s,(d-d )%,d%(s),6 - = max -vl|s,(d-d )*,d " . (5.2.5)
J J Al ] J
J
Subtracting the open-loop sensitivity to the state vector S , we ob-
tain an expression for the value of partial stochastic compensation.
This value is the maximum amount an expected value decision maker
would be willing to pay to set the jty decision variable to compen-

sate for given state variable outcomes 8

F(s) = vl_s,@-lj)"f,d;‘(ﬁ),é”>- wls,d%,e> . (5.2.6)

Taking the expectation over s

b

Fle .= [ Fs) fsley (5.2.7)
S
we obtain the value to the decision maker of retaining flexibility on

dj » 8iven complete information on the state variables.

APPROXIMATIONS IN SENSITIVITY ANALYSIS

The above analysis has illustrated that the value of information
computation and the value of flexibility computation can be interpreted
as calculations of expected compensation. The compensation function is
defined as the difference between the model's open- and closed-1loop
sensitivities,

In the practical application of sensitivity analysis, approximate
techniques are usually employed in the calculation of the open- and
closed-loop sensitivities. Such approximations make it possible for
the decision analyst to obtain, at relatively low cost, approximations
to the value of information given flexibility. These, in turn, provide

indications of the benefits of various information system and model
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design proposals and, therefore, help to guide the analyst in his model
development. Some practical simplifications, including the ceteris

paribus fashion in which sensitivity analysis is usually conducted, are

illustrated in the ollowing section.

5.3 PROXIMAL ANALYSIS

A major problem associated with a complex decision model is the

evaluation of the value lottery v(s,d), s €S, deD. Inmany

practical cases the number of variables is so large that the costs of
direct evaluation and even computer simulation become prchibitive.

Calculation of stochastic compeusation functions in this case is not
possible.

A method which is often useful for dealing with such problems,
termed"proximal decision analysis! has been developed by Howard [8].
Rice [11] has shown that for the evaluation of complete information
given complete flexibility the conditions of the proximal model allow
deterministic compensation functions to be substituted for stochastic
compensation functions. We shall show how this technique may be ex-

panded to provide an estimation of the value of incomplete information
and flexibility.

In its basic form proximal analysis assumes a model of the form
of Fig. 1.4 with urconstrained continuous decision variables, a smooth

value function, and a utility function that is approximately exponen-

tial with a small or moderate degree of risk aversion. Following

Howard and Rice we imagine that the decision analysis cvcle has yielded

the following data. +irst, we suppose that the deterministic phase has

resulted in a deterministic model relating outcome value to state and

decision variable settings. A probabilistic phase is assumed to have

supplied us with a vector of mean values S and a matrix of covari-
ances among the state variables. Howard (8, p. 511] suggests a proce-
dure for obtaining this data.

Let

1

d = max"" v(5,4) (5.3.1)
d

denote the optimum deterministic decision setting and suppose that
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v(s,d) is approximated by a second-order Taylor series expansion about
the point @,_é) . If state and decision variable settings are incre-
mented by amounts /s and /M from s and __3, respectively, then the
approximate increase in v , denoted v , is (see Section 3.2) given
by

v = b'ss +‘§ Ls'Wpas + As'Tid +—; rd'Qud , (5.3.2)
where

>

Dl (5.3.3)
| 1G9 |
— ‘Zv 2=

e w0l (5.3.4)
- 1 J G\_d)_J
— .,zv -

1w : (5.3.5)
L s d) |
- “2\/ %

N 3 0 1~ . . (5.3.6)
L L .] @;ﬁ)_‘

The linear term in d is not present since

r = v = () . (5.37)
- E‘Tj (E,_&)]

OPEN- AND PARTIALLY CLOSED-LOOP SENSITIVITIES

We wish now to find the open-loop sensitivity of v to changes
in state variables $; with i belonging to some index set I . The
result is obtained from (5.3.2) with =0, o, =0, k1.
Using the notation of Section 8.2,

Av = b s +—}) ‘giw

1 ™ Be ey (5.3.8)

1131
gives the open -loop sensitivity.
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Next we shall calculate the partially closed-loop sensitivity in
which the only decision variables that may b» adjusted are those dj
with j in an index set J . Putting lsg aud ng- equal to zero in
€5.3: %)y

' 1
Av .-PIQEI 4+ =

' - 1
5 .gIWHA_sI + A5 T . Ad. 4+

]
Bl * 2 M09, - SR

Setting the gradient with respect to gJ equal to zero, we get an ex-
pression showing how the flexible decision variables are optimally ad-

justed in response to changes in state variables:
* -1 1
qu = -QJJIIJéél o (5.3.10)

Substituting this expression into (5.3.9) gives the partially closed-

loop sensitivity of ovtcome value to state variable changes:

S, R O
Wey = 2phep + 5 laMypisy - 5 45Ty Ty ls, LR

<

— ) ~
— E—r

—)

open-loop sensitivity effect of compensation

We see, in analogy with iloward's results [8, Fquation 7.4], that the
partially closed-loop sensitivity is composed of terms representing
the open-loop sensitivity to state variables plus terms that show the

effect of compensation.

THE EXPECTED VALUE OF DETERMINISTIC COMPENSATION
Subtracting (5.3.8) from (5.3.11) we get an expression for the
value of deterministic compensation for the quadratic decision problem:
1

(fsp) = - 3 80T Q7T a5, (5.3.12)

Y comp SR ARARES

The value of deterministic compensation tells us what it would be worth
to ihe decision maker in 2 completely deterministic environment to ad-
just decision variables in response to changes in state variables.

The expected value of deterministic compensation is obtained by

taking the expectation of (5.3.12) with respact to the marginal
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probability distribution of Syt

&l 1
710557 Ty Eg) e ztracc[TIJQJJTIJE(“SIH-I)]

(5.3.13)

1
: Compl&‘ -5 E(ss

A comparison with (3.2.39) shows that (5.3.13) is exactly the expected
value of perfect information on s; &iven perfect filexibility on QJ
for an expected value decision maker with a quadratic value function if
any f the conditions of Corollary 2 are satisfied.

Now suppose that all state variables are adjusted in the sensitiv-

ity calculations. The compensation functicn becomes

vcjmp(qE) = s'T QJJ NJus : (5.3.14)
If the function E(4slis;) 1is available, the compound function
-1 1
1| 2 2l
Veomp[ECs 185 ] = BCas" b is DTy Q) Ty B las |sy) SRS
may be formed. Taking the expectation of (5.3.15) yields
Veomp 1€ = EIBCs | 45 )Ty @ Ty ECag | 28] Lo

which is the expected value of perfect information on 51 given per-
fect flexibility cn d; for an expected value decision maker with a

quadratic value function if any of the conditions of Corollary 1 are

satisfied.

APPROXIMATING THE LVPIGPF WITH SENSITIVITY ANALYSIS

Howard [8, Appendix B] gives a method for numerically evaluating
b,W, T, Q, and various conditional and unconditional covariance
matrices. Hence, the proximal model and the theorem and corollaries
of Chapter 3 provide a means for obtaining an approximation to the ex-
pected value of inforration given flexibility for the risk sensitive
decision maker with a smooth value function.

The above results, however, show that under certain conditions a

simpler procedure may be applied. For the purpose of illustration,
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assume that the value function for the decision model contains two
state variables and two decision variables. We wish to estimate the

value of perfect information on Sy given perfect flexibility on d

|

2
For the first calculation we shall ignore the effect that knc vledge of

1 has on the estimation of Sy - The procedure consists of

1. evaluating deterministic open-loop sensitivity to
changes in the observable state variable 51

2. evaluating deterministic partially closed-loop
sensitivity { d, continuously optimized) to changes
in 51 o

3. calculating the difference in these two functions,

Vcomp(asl) ’

4. determining the expectation of v
comp

If knowledge of S1 impacts the decisicn through its effect on
the estimation of Sy s this may be included in the approximation using

the following procedure:

1. evaluate deterministic open-loop joint sensitivity

to changes in 54 and Sy

2 evaluate deterministic partially closed-luoop joint
sensitivity ( d2 continuously optimized) to changes

in s and s, ,

3. calculate the difference in these two functions,

Vcomp(Asl,Asz) 3

4. determine E(Asz|“sl) ,» the conditional mean of 2s,

as a function of Asl 5
5. determine the expected value of vcomp[ﬁsl,E(AﬁzlAﬁl)] .
Inplementation of this procedure could be facilitated by approximating
joint sensitivities by quadratic functions. A good approximation may

be expected provided that ElE(A52|Asl)] = 0 ; that is, the prior ex-

pectation is a zero shift in the mean of the unobservable state variable.
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CHAPTER 6
SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 SUMMARY AND CONCLUSIONS

The objective of the thesis has been to demonstrate that the con-
cept of decision flexibility may be usefully incorporated into the
decision analysis framework. The demonstration has been bas.d on one
possible definition of flexibility — the mathematically precise defini-
tion that was presented in Chapter 1.

We feel confident that we have achieved at least some measure of
success. In Chapter 1, application to the classical problem of choos-
ing plant flexibility indicated that our definition provides an analytic
representation of flexibility that secems to preserve successfully in-
tuitive notions. A logical and consistent means for calculating the
value of any combination of information and flexibility was presented
in Chapter 2. By applying the technique to a sample decision problem,
we demonstrated that the coacept might be useful for generating insights
into problem structur:. It was shown that just as the standard value
of information calculation could be used to evaluate information-gather-
ing schemes, the vaiue of information given flexibility could be used
to evaluate information distribution and utilization systems.

An exploration into the value of information given flexibility for
quadratic decision problems was undertaken in Chapter 3. We obtained a
closed-form expression for the value of perfect information on a subset
of state variables given perfect flexibility on a subset of decision
variables. Alternatively, this result may be regarded as the solution
to the two-stage quadratic decision problem in which some decisions must
be made now, while others may be delayed until after the receipt of some
information. The relation of the value of joint information to the sum
of individual values of information was clarified by the quadratic anal-
ysis. It wac shown that the first order additivity or non-additivity of
the value of informatioa is determined by state variable correlation.

To a first order approximation, if two pieces of information are un-
correlated, then the value of obtaining that information simultaneously
equais the sum of the values of receiving each item of information by
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itself. Similarly, the first order determinant of the additivity or
non-additivity of the value of flexibility is decision variable inter-
action. If the value function is additive in two decision vectors,
then to first order, the value of simultaneously obtaining flexibility
on both decision vectors will equal the sum of the values of obtaining
flexibility on each vector individually.

The results concerning quantization in Chapter 4 were indicative
of an important "rule of thumb" for decision analysis. Most of the
value of including a state information variable or a flexible decision
into a decision model is achieved by using three or more levels of
quantization in a decision tree. “he marginal gain of using more than
four levels seems to be small. The effect, while relatively clear for
independent state variables and non-interacting decision variables,
tends to be obscured if the state variables are highly correlated or if
the decision variables interact strongly with other variables in the
model.

Our results demonstrated that once the number of quantizing and
discretizing levels has been chosen, the sensitivity to the particular
quantizing scheme is relatively small. If practical considerations
indicate that considerable importance is associated with small differ-
ences in certain ranges of a state or decision variable, then, cer-
tainly, such information should be taken into account. In the absence
of such information the graphical technique of Section 4.3 may be em-
ployed. A good rule of thumb for quantizing a probability distribution
is to use roughly equal probability portioning with regions of high
probability density getting slightly more probability than regions of
low probability density.

The computational difficulty of -erforming the value of informa-
tion given flexibility calculations gives impetus to a search for
simplifying approximations. The analysis of Chapter 5 showed that an
approximation to the expected value of perfect information given per-
fect flexibility could be obtained by applying sensitivity analysis to
the decision problem's deterministic value model. This enables a de-
terministic compensation function to be evaluated. This function is

then combined with the conditional expectation of the state vector s
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given the observable state variables s The approximation to the

1
expected value of information given flexibility is obtained by inte-
grating this combined function over the prior distribution of the ob-

servable state variables.

[ 6.2 SUGGESTIONS FOR FURTHER RESEARCH

In the course of our work a number of what appear to be highly
| produrtive avenues for research were identified. Unfortunately, be-
cause of time constraints these avenues were only briefly explored.
We mention here two main aieas where we feel additional investigation
would prove highly fruitful.

Our definition of flexibility has been shown to provide insight
and understanding into several problems. Application of our defini-
tion (or similar definitions of decision flexibility) to other common
decision problems would likely provide similar problem insights. Con-
sider, for example, an analysis of flexibility in the problem of li-
quidity preference. Results might indicate problem characteristics
that determine the logical quantity of resources to be held in reserve
] for the purpose of meeting unexpected opportunities or requirements.
Such results would prove highly useful. For this reason, we feel that
exploration into the concept of decision flexibility should be con-
tinued.

Secondly, there seems to be potential for the analysis of the
economic costs of discretization and quantization. Analytic techniques
for investigating the distortion caused by data quantization are

nearly as plentiful as the use of quantized data systems. We have shown

that such data distortion can be evaluated in precise economic terms.
Such a result provides the logical means for judging a quantizing
scheme and an objective function for the design of optimal information

reporting and data processing systems.
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APPENDIX A
SUMMARY OF BASIC NOTATION

$ = (Sl""’sn) = 1 random vector describing the state of Nature.

5) = the set of conceivable states s of Nature. Uncertainty about
5 is expressed by a probability distribution defined on S .

3 = a state of experience or information on which probability as-
signments are made.

(7 = the experience level prior to the analysis.

s|8} = the probability density function describing the uncertainty in

: 5 when the state of information is § .

s8> = | 5{5,8) = the expected value of s given § .
} Sr;S'

d = (dl,...,dm) = a vector of decision or actio'. variables over

which a decision maker has direct control.

d-d. = the vector composed of all decision variables but dj

= J

D = the set of conceivable actions.

Y ™ a sct of possible information signals y .

n = an information structure (a function from S to Y ) which pro-

duces the information signal y = n(s) when s 1is the true

state of Nature.

z = (?1,...,in) = an information distribution structure (a vector
of functions defined on Y ). =j(y) is the information made
available for the setting of the jth decision variable when

the information signal is y .

d(:) = (dl(-),...,dm(-)) = a decision strategy (a function of Yy,
*(y) , or the level of experience § , whose domain is D ).
If danger of confusion is minimal the function may be abbrev-
iated d

i) = the set of feasible decision strategies.
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a value function (a real valued function defined on S x R ).

The monetary value to the decision maker if he chooses acticn

d and the state of Nature is s, is v(s,d)

a utility function (a real valued function defined on R ).
The utility to the decision maker of the monetary value v

is  u(v)

a profit function.

{1,...,n) = the set of state variable indices.
{1,...,m} = the set of decision variable indices.

a subset of N denoting the set of indices corresponding to
those state variables on which information is available. I

denotes the complement of I

a subset of M denoting the set of indices of decicion vari-
ables for which flexibility is available. J denotes the com-

plement of J

the matrix [tkllkgl,ng of those elements €1 of the matrix

I such that k is in I and 1 is in J .
the vector of state variables on wvhich perfect information is

available.

E(§l§l) = the conditional mean of s given perfect information

on s, .
=

the vector of decision variables for which perfect flexibility

is available.

the information structure for which perfect information is

available onr 51 and perfect flexibility exists on EJ :

the value of the information structure CsFd;
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APPENDIX B
THE ENTREPRENEUR'S PRICE-QUANTITY DECISION

We present here the solution to the entrepreneur's prcblem of
Section 2.2. An entrepreneur plans to produce a new product and wishes
to decide upon a price and quantity that will maximize his expected
profits. His problem would not be too difficult if it were not for
uncertainty, but he recognizes thet he is uncertain about what his
costs will be and about what the demand for his product will be.

We suppose that our entrepreneur feels that the demand for his

product will be related to the price ke charges according to

a
LI 3r0 b - e, B.l
x=2 (3.1)

where

H
L}

demand (in thousands of units) ,
p = price per unit (in thousands of dollars) ,
= a random variable uniformly distributed from zero to one ,

a,b = constants

Suppose, further, that he feels his costs ¢ per unit are well repre-
sented by a random variable uniformly distributed between zero and

one:

¢ = total cost per unit (in thousands of dollars)

We assume the random variables e and c¢ are independently distributed.

The demand curve (B.1l) and the probability dersity function for the de-
mand parameter e are illustrated in Fig. 2.4. The probability den-
sity function for the cost variable ¢ 1is illustrated in Fig. 2.3,

The objective of our analysis is to determine our entrepreneur's
optimal price and quantity and the corresponding expected net profit
under various perfect information given perfect flexibility structures.
Let

G = quantity of product produced (in thousands of units) ,
v = net profit (in millions of dollars) .
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Then,

p(g -b-e)-cq, if %-b-e < q
v(p,q,c,e) = { F 3 (B.2)
(- a, if S-bee v g

Suppose first that our entrepreneur secks no further information.

As a function of price and quantity his expected ne* profit will be

(v|p,q,g\ = I v(p,gq,c,e) lele} fcle)
ey e
= 3—2-(b+b—2+—1)+b~+(q-—1)-b-m3 (B.3)
o A LR L s

Differentiating and setting the result equal to zero we obtain expres-

sions for the optimal price and quantity,

2
4a-1 (2a-1 b+l
p* = Vebss = 9% = £ 4;-9 L .y ; (B.4)

which yield a maximal expected profit of

VI]E> = vlpk,qk,es = a + 2.1 J (2b+1) (4a-1)

5 "3 . (B.5)

To be specific, let us suppose that a = 2,25, b= .5 . Then

p* = 1 = 51,000 , g% = 1.25 = 1,250 units . (B.6)

The expected demand is

e =% - b- el = 1,25 = 1,250 wnits | (B.7)

and the expected net profit is

“vl|e-= .5 = $500,000 . (B.8)

We shall now proceed to calculate the optimal decision strategies,

the expected payoffs, and the values of the several information-
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distribution structures in which perfect information is available on

various state variables and flexibility exists on various decision
variables. 1In all there are nine possible distinct combinations of
state variable information and decision variable flexibility. Unless
otherwise noted, in each of these cases the optimal decision strategy

is found by differentiation. By (2.1.7), the values of the information-
flexibility structures (the entries of Table 2.1) will be the differ-

ences between the expected profit under the structures and Eq. (B.7).

Perfect Information on ¢ and e -- Perfect Flexibility on p and ¢q

If costs and demand are revealed to the entrepreneur before he
sets his price and quantity, then, obviously, he can expect to increase

his profits. In such a situation the maximal expected profit

<v|CceFpq,E> = f f max v(p,q,c,e) [elﬁ} {C|6}
cY e
caa Dl 8 12y 32 3.9)
2 4 9
is obtained by setting
* = -—C-g % = b+e 2 - -
P e q* g b-e (B.10)

(assuming that a >b + ¢ so that p*¥ >c ). With a = 2.25 ,
b= .5, ~viCceFpq,t. = $771,915 .

Perfect Information on ¢ -- Perfect Flexibility on p and g

Should costs alone be revealed prior to the setting of p and gq,

max | v(p,q,c,e) fele} {c|e}
¢’ p,q e

1
ca+2- o+l [ Vaac-e® ae

0

<V lCCqu ,€'>

b V2 3 s & Y
=a+ - ———gtl- L(l-a),/Za-l + az(sin k lzi + )

2 2

=)

(B.11)
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is attained with

- (2a-c)c - PO 1
p¥ = /""ESIT" ) (a-c¢) \/ dean b (B.12)

, b=.5, .v|CcFpq,E> = $639,416.

-

-2
L}

|
~o
~o
w

With the example values a =

Perfect Information on e -- Perfect Flexibility on p and_ ¢

Should the demand parameter e be revealed prior to the setting

of p and gq ,

<v|Cerpqg,e> = [ max [ v(p,q.ce) fcle} fe‘€7

& pig &
1/2 /
=a+l,;+-%*--£§i3L [(b+1)3/2- B, (B.13)

and the optimal decision strategy is

a N
Y = -_— % = 2 O - = &)
) ‘\/2(] = > L@ 2a(bte) b- o . (B.14)
With a =2.25, b= .5, <v|CeFpq,E~> = $651,924 .

Perfect Information on ¢ and ¢ -- Perfect Flexibility on p

If perfect information on costs and demand is used only for the

setting of price,

TN

“v|CceFp,€> = max | max v(p,q,c,e) felel fcle}
q L" 0. p
= max Q-ﬂ + aq log +b+1) S (B.15)
q 2 q+b

The optimal pricing strategy scts p at the highest value that will

sell out the entire production quantity.

'.':::—-a'
P q+b4e

(B.16)

With the parameter values a = 2.25 , b = .5 , the maximizing q in

— — - - 2 e — =




(B.15) is approximately q* = 1.0947 , and this yields an expected
profit of «v|Cchp,83 = $651,639 .

Unlike the otlicr optimal strategies, if our entrepreneur chooses
this information-flexibility structure, it is conceivable that he will
lose money! In the worst possible outcome,demand will be at its lowest
(¢ = 1) and costs will be at their highest (c = 1) conceivable values.
The pricing strategy (B.16) puts p* = $867.15: our entrepreneur
will lose $132.85 on each of the 1,095 units he sells.

Perfect Information on ¢ and e -- Perfect Flexibility on q

I1f perfect information on costs and demand is used only for the

setting of quantity,

<v|CceFq,&> = max r f max v(p,q,c,e) fels} fc|e}
(V]

. JaGeD) (B.17)

Y o= sl ko= ——_- s
p ‘/2b+1 , gt= Jfa(2btl) -b- e . (B.18)

It is assumed in (B.17) and (B.18) that a > 2b+l so that costs may
not exceed p* . With the values a = 2.25, b= .5, -v|CceFq,t> =
| $628,680 .

Perfect Information on ¢ -- Perfect Flexibility on p

Suppose our entrepreneur will have perfect information on costs but

uses that information only in the setting of his price. Then,

~/|CcFp,&- = max M max [ v(p,q,c,e) fele} {c|8}

q ¢ p e
b 1
=a+3 -5 J(2b+)(4a-1) (B.19)
4a-1 , 2b+1
p* = 8 9F = (2a-1) Zal (B.20)
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Comparison of (B.19) and (B.20) with (B.5) and (B.4) shows that knowledge
of ¢ does not aid in the setting of p . While knowing costs will im-
prove our entrepreneur's estimate of his expected profits, it does not
help him to improve his pricing strategy. For this reason there is no
economic advantage to seeking information on costs if this information

cannot be used for the setting of quantity.

Perfect Information on ¢ -- Perfect Flexibility on gq

Suppose the information on costs is used only for the setting of

quantity. Then,

<v|CcFq,8~ = max | s f v(p,q,c,e) fele} icle}
P ¢ q e’

=3 a? B.21
8 (3b+2) °* g
2 3a
0 if ¢ =
. e . ‘ 6b+4
pr=z | grae = . (B.22)
_-:5 (a-c) - b - ¢ , otherwise

Since quantity may be conditioned upon costs, if costs turn out to ex-
ceed his selling price the entrepreneur chooses not to produce his
product. With the example values of a = 2.25 » b=.5, (B.21) be-
comes -vICcFq,8> = $542,411 .

Perfect Information on e -- Perfect Flexibility on p

Should our entrepreneur anticipate knowing demand before he sets

his price, his expected profit is

) »
~v|CeFp,8 » max ' max v(p,q,c,e) fclel felrt
q e p c

+b+1
= m:x (- % + aq log 3;:3—/ : (B.23)

and his optimal pricing strategy is
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These are the same results we obtained i the calculations under the
structure CceFp . We conclude, therefore, that of the knowledge ¢ , e ,

it is only the knowledge of e that has economic value.

Perfect Information on e -- Perfect Flexibility on q

Lastly, we suppose that our entrepreneur will receive perfect

information on demand but may use that information only for his set-

ting of quantity. Then,

v |CeFq,&> = max [ max f v(p,q,c,e) {cle} fele?
P ¢ q c

b 1
= a4+ 3 + 3° Ja(2b+l 5 (B.25)

p* = Zbil , q*= fa(2b+l) - b - e . (B.26)

This corresprads to (B.17) and (B.18). As far as setting quantity is

concerned, the economic value of knowledge of costs and demand is

achieved through knowledge of demand alone.
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